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ABSTRACT

To quantify the pore characteristics of various macerals in Chang 7 lacustrine shales, macerals were
effectively identified according to their optical and morphological characteristics, and the nanoscale pore
structure of macerals was observed by scanning electron microscope. Meanwhile, the reflectances of
different positions in the same pieces of vitrinite or solid bitumen with heterogeneous pores develop-
ment were measured. The results showed that the average contents of sapropelinite, liptinite, vitrinite,
inertinite and solid bitumen are 42.7%, 8.7%, 13.6%, 13.8% and 21.2%, respectively, which suggests that the
source of the organic matter of the Chang 7 shales is a mixed source input. The organic pores of Chang 7
shales are enriched, and the pore shapes are mostly round or elliptical. The pore size of organic pores has
a wide distribution, mainly concentrate in the range of 100—400 nm, and the average plane porosity of
organic pores is 10.13%. The size order of the organic pores in various macerals is: solid
bitumen < bituminite < alginite < vitrinite < fusinite < liptinite. The abundance order of organic matter
pores of each maceral is as follows: alginite > fusinite > bituminite > solid bitumen > vitrinite > liptinite.
OM pores are mainly contributed by bituminite, solid bitumen and fusinite. The plane porosity of
bituminite increases with maturity. In the process of thermal evolution, the plane porosity of fusinite is
distributed in the two ranges of 20%—28% and 1%—7%. The former is mainly the primary pores of the
fusinite itself, and the latter is the secondary pores formed in the thermal evolution. As for the organic
pores of other macerals, no obvious thermal evolution law was found. Meanwhile, the surface imper-
fections of vitrinite or solid bitumen is enhanced by the enrichment of organic pores (an increase in pore
size or pore number), which may result in the underestimation of their reflectances.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Shale oil and shale gas are unconventional resources with great
development potential and are gradually being produced
commercially by various countries (Han et al., 2019; Cao et al,,
2020a; Pang et al., 2021). Shale pores as the main storing space

Abbreviations: iCLEM, integrated correlative light and electron microscopy;
SEM, scanning electron microscopy; PSD, pore size distribution; VR,, vitrinite
reflectance; BR,, solid bitumen reflectance; PA, Pore area in scanning electron
microscopy image.
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for shale gas and oil have been studied extensively (Curtis, 2002;
Slatt and O'Brien, 2011; Ma et al., 2015; Wang et al., 20153, b; Guo
et al., 2018; Han et al., 2020), which can be divided into organic
matter (OM) pores, interparticle pores and intraparticle pores
(Loucks et al., 2012). OM pores refer to pores developed in organic
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matter (Loucks et al., 2009). The proportion of OM pores in shale
pores can reach 40% (Chalmers and Bustin, 2007, Chalmers et al,
2012; Curtis et al., 2010; Sondergeld et al., 2010). Han et al. (2019)
indicated that the relative contribution of OM pores to total pore
volume could reach 88.73%. Many studies have found a positive
correlation between total organic carbon (TOC) and gas content or
methane capacity (Strapoc et al., 2010; Ma et al., 2015). Therefore,
OM pores are generally considered to be primary storing space for
hydrocarbons in shales (Ross and Bustin, 2009).

Most of the existing work on the development characteristics
and controlling factors of OM pores is conducted on marine shale
(Curtis et al., 2012; Milliken et al., 2013; Loucks and Reed, 2014;
Wang et al., 2016; Hu et al., 2017, 2020; Liu et al., 2017; Ji et al., 2017,
2019; Chen et al., 2019; Zhang et al., 2020a). Although a few studies
have been conducted on OM pores in lacustrine shales, most of
them still remain in the description of morphology and size char-
acteristics (Chen et al., 2016; Wang et al., 2018, 2020; Bai et al.,
2022; Kuang et al., 2022; B. Liu et al,, 2022). OM pores were
rarely studied in the view of macerals. At present, some studies
have found that the pore developments of various macerals were
very different with each other in the same shale sample (Curtis
et al,, 2011, 2012; Sanei et al., 2015). The pore characteristics of
dominant macerals in marine shales have been relatively well
investigated, including fusinite (Curtis, 2002), sapropelinite,
amorphous (Pacton et al., 2006; Lohr et al., 2015), graptolite (Luo
et al,, 2016; Ma et al,, 2016; Guan et al., 2019), acritarch (Borjigin
et al., 2021) and chitinozoan (Ardakani et al., 2018). However, it is
well known that macerals in lacustrine shales are much more
complex than marine shales. And the lacustrine shales are widely
developed in China, such as Chang 7 shale of the Ordos Basin. A few
initial works showed that there is a great hydrocarbon potential in
Chang 7 shale (Yang et al., 2013; Lei et al., 2015; Fu et al., 2020). Guo
et al. (2018) tried to utilize scanning electron microscopy (SEM) and
optical microscopy to describe the pore development characteris-
tics of solid bitumen and inertinite of Chang 7 shale in the Ordos
Basin. Nevertheless, the pore development of the sapropelinite,
liptinite and vitrinite in this lacustrine shale remain poorly
understood.

In addition, the reflectance of vitrinite and solid bitumen in
organic matter is considered to be the most reliable parameter to
reflect thermal maturity of sedimentary organic matter (Taylor
et al., 1998; Corcoran and Doré, 2005; Dembicki, 2009; Sudrez-
Ruiz et al,, 2012). Besides thermal maturity, the reflectance of vit-
rinite or solid bitumen is also affected by other factors, such as
bacterial degradation (Hartkopf-Froder et al., 2015; Synnott et al.,
2016), measuring probe size (Sanei et al., 2015), surface quality
(Borrego et al., 2006), and associated minerals (Bostick and Alpern,
1977). Nonetheless, the effect of OM pores development on
reflectance measurement of vitrinite and solid bitumen is still
unclear.

At present, argon ion polishing technology combined with SEM
is the main method to directly observe OM pores (Loucks et al.,
2009, 2012; Milliken et al., 2013; Han et al., 2016a; Klaver et al.,
2016; Cardott and Curtis, 2018; Hu et al., 2021). Although it is
easy to identify OM in the backscattered electron (BSE) mode of
SEM, various macerals cannot be distinguished only by the differ-
ence of morphology and grayscale in SEM images. Cardott and
Curtis (2018) proved that the relatively enriched macerals in coal
can be distinguished by using the subtle differences of grayscale
under SEM with low magnification (650—1000 x ) and high
accelerating voltage (10 kV), while the highly dispersed macerals in
shale is difficult to identify under this condition. The macerals are
mainly identified based on the color, transmittance, size,
morphology, internal structure and reflectance of the organic
matter under optical microscope (Stach et al.,, 1982; Taylor et al,,
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1998). Therefore, many researchers have tried to combine optical
microscopy and SEM to research the pore development character-
istics of different macerals (Bernard et al., 2012; Fishman et al.,
2012; Baruch et al., 2015; Cardott et al., 2015; Luo et al., 2016; Ma
et al., 2016; Liu et al., 2017, 2022; Guo et al., 2018; X.P. Liu et al.,
2022). However, because there are often tens to hundreds of
nanometer to micrometer organic matter in shales, it is very diffi-
cult to relocate organic matter between the instrument conversion
and the sample is also vulnerable to damage (Timmermans and
Otto, 2015; Guo et al., 2018). Integrated correlative light and elec-
tron microscopy (iCLEM) system, which can realize the observation
of optical microscope and SEM in the same experimental instru-
ment without sample transfer, has been widely used in cellular
biology research (Polishchuk et al., 2000; De Boer et al., 2015).
Hackley et al. (2017) have applied iCLEM system to characterize the
microstructure of macerals of the Bakken Shale from North Dakota,
USA, and have shown a good result. In addition, due to the 5 nm
resolution of SEM (Chalmers et al., 2012), about 60%—90% of OM
pores could not be observed under SEM (Milliken et al., 2013). Low-
pressure gas (carbon dioxide and nitrogen) adsorption (LPGA) ex-
periments can realize the quantitative characterization of pores in
the diameter range of 0.35—200 nm (Chalmers and Bustin, 2015;
Han et al., 2016a). Among them, LPGA-N, (Sing, 2001; Yang et al.,
2014) is suitable for characterizing meso- and macropores, and
LPGA-CO, (Han et al., 2016a; Wei et al., 2016; Cao et al., 2019) is
applicable for describing micropores (Bustin et al., 2008). LPGA
experiments have been extensively applied in the pore character-
ization of kerogen samples (Rexer et al., 2014; Teng et al., 2017; Han
et al.,, 2018; Pang et al., 2018), which can make up for the defect of
resolution of iCLEM in the observation of OM pores to a certain
extent.

In this study, 10 typical lacustrine shale samples with different
TOC contents and maturities were selected from Chang 7 member
of Yanchang Formation in the Ordos Basin, China. OM pores of
different macerals were characterized using iCLEM and LPGA ex-
periments. Furthermore, the reflectance at different positions of the
same vitrinite or solid bitumen with nonhomogeneous pore
development were also analyzed. Based on these results, the pore
characteristics of various macerals and the effect of OM pores on
reflectance measurement were revealed.

2. Geological settings and samples

The Ordos Basin is located in the west of North China Platform
with a total area of about 32 x 10% km?, which is divided into six
tectonic units: Yimeng uplift, Tianhuan depression, Western edge
thrust belt, Weibei uplift, Jinxi fault-fold belt and Yishan slope (Xiao
et al,, 2005; Guo et al., 2018) (Fig. 1a). The Yanchang Formation is
further subdivided into 10 members, ranging from Chang 1 to
Chang 10 from top to bottom (Han et al., 2019) (Fig. 1b). Chang 7
member developed in the deep lake and semi-deep lake sedi-
mentary environment of typical continental lake, whose lithologic
combination is black or gray black oil shales and carbonaceous
shales (Sun et al., 2015; Jiang et al., 2016) (Fig. 1b). As one of the
main hydrocarbon source rocks in the Ordos Basin, Chang 7
member shows a significant potential in shale oil and gas (Lei et al.,
2015). In our study, ten shale samples belonging to Chang 7
member were collected from wells Yan 56, Huan 317, Zhuang 233,
Zheng 3, Honghe 21 and Jinghe13 (Fig. 1a).

3. Methods
3.1. Geochemical and mineralogical measurements

The determination of TOC content was carried out in a carbon-
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Fig. 1. Location and tectonic units of the Ordos Basin (a), and lithology column of Yanchang Formation (b) (based on Pang et al., 2021).
Table 1

Data sources and calculation methods of different pore structure parameters.

Data

Parameters

Models

Pore volume and surface area of micropore

Pore volume and surface area of meso- to macropore
PSD (~1.5 nm)

PSD (1.5—200 nm)

CO, adsorption branch
N, adsorption branch
CO, adsorption branch
N, adsorption branch

Dubinin-Radushkevich (DR)
Barrett-Joyner-Halenda (BJH)
Density functional theory (DFT)
Barrett-Joyner-Halenda (BJH)

sulfur analyzer (CS-230) produced by LECO. A Rock-Eval II instru-
ment was utilized for pyrolysis analysis to powdered samples (100
mesh). And, the equivalent vitrinite reflectance (Eq-R,) was used to
characterize organic matter maturity of samples. This parameter
was calculated by Eq. (1), which is applicable to type III or type II
organic mattes (Jarvie et al., 2001).

Peters et al. (2005) had proved that the calculated values of Eq-
R, are in good agreement with the actual measured values of vit-
rinite reflectance. Finally, the mineral composition of shale samples
was tested in the TTR IIIl multifunctional X-ray diffractometer.

3.2. iCLEM
EqQ-Ro = 0.0180 x Trpax—7.16 (1) ) )
Firstly, the shale samples cut into small cubes
(1 cm x 1 cm x 0.3 cm) were polished by argon ion using Leica
Table 2
Geochemical parameters of Chang 7 shale samples.
Sample Well Depth (m) TOC (W.t.%) S; (mg/g) S, (mg/g) Tmax (°C) HI (mg/g TOC) Eq-R, (%)
1 Zheng3 866.74 2.89 0.62 15.16 437 397 0.71
2 Zhuang233 1798.7 25.10 10.43 135.13 439 538 0.74
3 Jinghe13 1357.23 1.46 0.29 5.68 440 302 0.76
4 Zhuang233 1790 6.22 211 25.30 443 407 0.81
5 Honghe21 1676.69 0.46 0.15 0.36 444 67 0.83
6 Yan56 2963.1 6.09 2.98 14.91 446 245 0.87
7 Yan56 2978.5 6.29 3.02 15.88 450 252 0.94
8 Yan56 2996.5 6.25 3.11 14.32 452 229 0.98
9 Huan317 2468.3 18.10 4.81 36.07 456 199 1.05
10 Huan317 24743 7.95 2.78 9.89 466 124 1.23
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Fig. 2. Tpax vs. HI diagram of Chang 7 shales (based on Espitalie et al., 1985).

EMTIC3X instrument. Then, the prepared samples were placed
under LEICA DM 4500 P polarizing microscope, and the macerals

Table 3
Mineral composition of Chang 7 shale samples.

Petroleum Science 20 (2023) 60—86

were identified under reflection light and fluorescence excited by
blue light, respectively. The magnification of the optical microscope
is 50—400 times. The pores of macerals were observed by Quanta
650 FEG SEM produced by FEI. The working voltage was 10 kV, the
working distance was 10 mm. Finally, the pore numbers and plane
porosities of each maceral were obtained from SEM images by us-
ing the JMicroVision image analysis software.

3.3. Organic matter isolation

Based on the demand for quantitative characterization of OM
pore, shale samples will be addressed to obtain their kerogen
samples utilizing the standard method recommended by Rexer
et al. (2014). First, 10—20 g fresh comminuted samples (60
mesh) were processed with 5—20 mL hydrochloric acid for 12 h
to remove carbonate minerals. And, the mixture was diluted
with degassed water, centrifuged (15 min, 3500 r/min) for 3
times and freeze-dried (~25 °C). The freeze-dried samples were
then soaked with 15 mL hydrofluoric acid for 12 h to remove
silicate minerals, and diluted again with degassed water. Finally,
a qualitative filter paper with 25 pm particle retention was used
to filter organic matters. Considering that soluble organic matter
also contains a large number of pores (Milliken et al., 2013), in
our study, chloroform bitumen ' A’ was not removed by Soxhlet
extraction.

3.4. LPGA

The crushed samples (60 mesh, Han et al., 2016b) were firstly
dried and degassed under a high vacuum (<10 mmHg) and high
temperature (110 °C) condition for more than 12 h (Tian et al,,
2013). LPGA experiments were performed on 1-2 g prepared
samples by utilizing a Micromeritics ® ASAP 2020 instrument.
Studied samples were then exposed to N or CO; at ~196.15 °C or
0 °C, respectively. In the end, the amounts of absorbed N, and
CO, were calculated in the relative pressures (P/Py) ranges of

Sample Relative percent (w.t.%) Relative clay percent (w.t.%)
Quartz Feldspar Calcite Dolomite Pyrite Siderite Aragonite Clays I/S Ilite Kaolinite Chlorite

1 26 89 9.5 55.6 59 20 8 13
2 23.44 6.91 40.98 28.67 70 22 3 5
3 43.2 114 0.8 4.7 39.9 64 22 2 12
4 45.82 6.44 17.68 30.06 77 16 2 5
5 235 17.2 3 56.2 31 29 19 21
6 24 15.3 2.1 13 13.8 43.5 53 18 13 16
7 293 10.8 4 55.9 57 17 12 14
8 315 12.5 6.6 49.4 64 17 11 8
9 2213 8.2 2.27 19.04 48.36 69 25 3 3
10 24.82 9.29 5.24 60.65 71 21 4 4
(a) 10 (b) 10 |

e 9 (I

8 8 (I
o 7 o 7 [—
2 s T 6 [
% 5 % 5 [I——
(2t D 4 | ———

3 | S— k.

2 2

1 1

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Relative percent, wt.% Relative clay percent, wt.%
M Clays M Quartz W Feldspar Calcite M Dolomite M Pyrite B Siderite M Aragonite s llite M Kaolinite M Chlorite

Fig. 3. Bar graph of mineral contents of Chang 7 shale samples.
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Zheng3-866.74 (F)

m Honghe21-1676.69 (F)

(@) Yan56-2963.1 (F)

Zhuang233-1798.7 (F)

Fig. 4. Characteristics of macerals in Chang 7 shale under reflected light, fluorescence and scanning electron microscope (a—c: alginite; d—f: saprolite hydrogen-rich bituminite;
g—i: humic hydrogen-poor bituminite; j—m: liptinite; n—p: vitrinite; q—s: fusinite; t—v: mineral bitumen matrix; R: reflected light; F: fluorescence; SEM: scanning electron
microscopy).
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Table 4
Compositions of macerals for the studied samples.
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Sample Sapropelinite (%) Liptinite (%) Vitrinite (%) Inertinite (%) Solid bitumen (%) Mineral bituminous matrix (%)
Alginite (%) Bituminite (%) Sporinite (%) Cutinite (%) Resinite (%)
1 9.21 42.11 5.26 132 1.32 15.79 18.42 6.58
2 8.57 22.86 143 2.86 15.71 12.86 24.29 11.43
3 38.18 3.64 5.45 5.45 12.73 29.09 5.45
4 30.77 7.69 2.56 5.13 513 48.72
5 52.38 7.14 4.76 16.67 16.67 2.38
6 46.48 141 8.45 141 16.90 18.31 7.04
7 59.18 4.08 14.29 8.16 14.29
8 7.69 23.08 2.56 2.56 2.56 7.69 53.85
9 34.15 4.88 244 4.88 21.95 17.07 4.88 9.76
10 42.86 5.71 2.86 17.14 17.14 14.29
Sapropelinite, %
0 100
20 80
40 60
[
60 40
108 N NNNA& Vit
itrinite+
Exinite, % ' o
100 Inertinite, %

Fig. 5. Ternary diagram of organic maceral composition in Chang 7 shales.

0.05—0.995 and 0.0005—0.03, respectively. The pore size ranges
characterized by LPGA-N, and LPGA-CO, are 1.7—200 nm and
0.3—1.5 nm, respectively (Cao et al., 2016). So, in our study, CO;
and N, were utilized to discribe pore structure of micropore
(<2 nm) and meso-to macropore (2—200 nm) of studied samples,
respectively. The data sources and calculation models of different
pore structure parameters are shown in Table 1.

3.5. Reflectance measurement

In our study, the reflectance of vitrinite and solid bitumen (VR,
and BR,) was tested on a MPV-III microphotometer with input
voltage of 220 V and magnification of x 500 at 23 °C. The wave-
length and refractive index of the incident light are 546 + 5 nm and
1.5180 + 0.0004, respectively.

4. Results
4.1. Geochemistry
The organic geochemical information of studied sample was

shown in Table 2. TOC contents were distributed in the range of
0.46—25.1 w. t.% and averaged 8.08 w. t.%. The equivalent vitrinite
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reflectance (Eq-R,) ranged from 0.71% to 1.23%. The OM type was
analyzed by Tmax vs. HI chart (Espitalie et al., 1985). The results
showed that the OM types were mainly type Il in the ten Chang 7
shale samples (Fig. 2).

4.2. Mineral composition

The experimental results of mineral composition of Chang 7
shales were shown in Table 3 and Fig. 3. Among them, the contents
of clay minerals, quartz and feldspar were distributed in the range
of 28.67%—60.65%, 22.13%—45.82% and 6.44%—17.20%, and their
average contents were 46.82%, 29.37% and 10.69%, respectively
(Fig. 3a). The clay minerals are dominated by mixed-layer minerals
of illite and smectite, accounting for 31%—77% of the total clay
minerals and averaging 61.5% (Fig. 3b).

4.3. Organic macerals composition

In this paper, the macerals of Chang 7 shale were identified by
analyzing the characteristics of organic matter under reflection
light and fluorescence of optical microscope. At the same time, the
gray scale, morphological characteristics, contact relationship and
occurrence state of macerals under scanning electron microscope
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Fig. 6. Characteristics of OM-related pores in Chang 7 shale. (a, Yan56—2996.5; b, g, Zhuang233-1790; c, Jinghe13—1357.23; d, e, f, Zheng3-866.74; h, Zhuang233—-1798.7; i, j,

Yan56—2963.1; k, |, Jinghe13—1357.23).

can also be used as auxiliary identification basis.

The sapropelinite of studied samples was mainly composed of
alginite and bituminite. Alginite were mostly oval in shape, dark
gray and strongly protruding under the reflected light. Its fluores-
cence was strong and bright yellow. Under the electron microscope,
wrinkles and decorations were often observed on the surface
(Fig. 4a—c). Bituminite were mostly interstitial or lumpy in shape,
and appear gray or white under reflected light, with slight pro-
trusions. And, bituminite can be subdivided into yellow fluorescent
saprolite hydrogen-rich bituminite (Fig. 4d—f) and non-fluorescent
humic hydrogen-poor bituminite (Fig. 4g—i). In this study, bitu-
minite is the degradation product of low aquatic plankton, bacteria
and algae, which belongs to pre-oil bitumen.

The shape of liptinite often retained the plant tissue structure,
which was mostly clastic or banded distribution, and the outline
was clear. And, liptinite was gray and protuberant under reflected
light. Weak yellow fluorescence was observed under blue light
(Fig. 4j—m).

66

The vitrinite of studied samples were gray, low protrusions, no
fluorescence or weak fluorescence under optical microscope,
whose morphology was mostly angular or rod-like. Moreover, vit-
rinite had flat, homogeneous and shell-like fracture morphology
under scanning electron microscope (Fig. 4n—p).

The inertinite of Chang 7 shale was mostly fusinite, and its
morphology retained many plant tissue structures. Under the
irradiation of reflected light, it was white, no protrusions, and no
fluorescence (Fig. 4q—s).

In addition, secondary products and a small amount of mineral
bitumen matrix were found in Chang 7 shale. Secondary products
were mainly composed of solid bitumen, which was the cracking
product of crude oil and belongs to post-oil bitumen. Mineral
bitumen matrix is a collection of inorganic minerals and organic
matter, which is not a maceral with conventional definition. Under
optical microscope, mineral bitumen matrix was no fixed form,
gray, no fluorescence. Under scanning electron microscope, it was
uniformly mixed with minerals and distributed continuously
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A Semm 40 um

(c) Area, m? Perimeter, m Length, m Width, m Equivalent circular diameter, m Class
1.54E-09 2.01E-04 8.51E-05 2.54E-05 4.42E-05 oM
3.66E-12 6.80E-06 2.46E-06 1.98E-06 2.16E-06 OM pore
2.74E-12 6.21E-06 2.31E-06 1.36E-06 1.87E-06 OM pore
2.51E-12 5.58E-06 1.80E-06 1.62E-06 1.79E-06 OM pore
2.44E-12 5.54E-06 1.98E-06 1.57E-06 1.76E-06 OM pore
2.41E-12 5.50E-06 1.89E-06 1.63E-06 1.75E-06 OM pore
1.68E-12 4.68E-06 1.87E-06 1.22E-06 1.46E-06 OM pore

Fig. 7. Process of [MicroVision treating organic pores in SEM images. (a: Original SEM image; b: Organic pores were identified by JMicroVision; C: Pore structure parameter table

derived from JMicroVision).

Table 5
Statistical results of organic pores in the studied samples.

Sample OM counts Pore counts Average pore diameter (nm) Plane porosity (%)
1 76 666 471.69 21.62

2 70 55 891.49 3.23

3 55 263 593.19 7.23

4 39 557 331.85 10.46

5 42 693 611.77 2.40

6 71 292 614.42 9.43

7 49 581 913.36 8.07

8 39 2748 185.82 12.78

9 141 358 280.67 10.60

10 35 1578 304.56 1543

(Fig. 4t—v). into three types in this study: OM intragranular pores, OM internal

Different macerals in Chang 7 shale samples were identified and
counted in detail (Table 4, Fig. 5). The contents of sapropelinite,
liptinite, vitrinite, inertinite and solid bitumen were in the ranges of
30.8%—59.2%, 4.1%—13.5%, 2.6%—24.3%, 51%—18.9% and 2.4%—
53.8%, respectively. The results indicate that the main source of OM
in Chang 7 shale is a mixture of lacustrine lower hydrobionts, such
as algae, and terrigenous higher plant, which is consistent with the
research of Qiao et al. (2021).

4.4. OM pore characteristics under FE-SEM

4.4.1. Pore type

Under the backscatter mode of SEM, amounts of organic pores
and fractures were observed in Chang 7 shale. Based on pore
morphology, location and genesis, OM-related pores are divided
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microcracks and OM marginal shrinkage cracks. OM intragranular
pores are mostly round or elliptical, usually densely distributed in
honeycomb shape (Fig. 6a—h). Their pore sizes are mostly more
than 100 nm (Fig. 6d—h), and even some can reach 10 um (Fig. 6¢).
Microcracks in OM are mostly curved and interlaced, with widths of
hundreds of nanometers and lengths of more than 10 um (Fig. 6i
and j). The average density of microcracks is about 3—5 piece. OM
marginal shrinkage cracks are developed at the contact edges of
organic matters and inorganic minerals in a straight, serrated or
angular edge shape (Fig. 6k and 1). Most of them are hundreds of
nanometers in width and more than 10 um in length.

4.4.2. Pore size distribution and plane porosity
In our research, based on SEM images, the pore number and
pore size of each piece of OM of shale samples were counted in
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Fig. 8. Histograms of PSD of organic pores in the studied samples.
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Fig. 10. LPGA-CO; isotherms for our OM samples.

detail using JMicroVision software (Fig. 7). The statistical results
were shown in Table 5 and a histogram of pore size distribution
(PSD) of OM pores of ten shale samples was plotted in Fig. 8. The
average pore diameter of OM pores ranges from 185.82 nm to
913.36 nm. Under SEM, the size of OM pores is widely distributed in
the range of 5 nm—2.5 pm. Almost all PSDs show an obvious single-
peak pattern with strong left deviation, and the main peaks of PSDs
of organic pores ranges from 100 nm to 500 nm. Except for sample
2 (Fig. 8b), whose result of PSD is unrepresentative due to the lack
of organic pore (Table 5).

The plane porosities of organic pores of the studied samples
were shown in Table 5 and Fig. 9, with a range of 2.40%—21.62% and
an average of 10.13%.

4.5. OM pore characteristics revealed by LPGA
4.5.1. Isotherms

The LPGA-CO, isotherms of the studies sample can be seen in
Fig. 10. All of them began to adsorb at very low relative pressure.
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Fig. 11. LPGA-N; isotherms for our OM samples.

The morphology of isotherms is concave towards P/Py axis, and the
adsorbed amounts of carbon dioxide for organic matter samples
ranged from 1.5 cm>/g to 10 cm?/g. The LPGA-CO, isotherms of all
OM samples are type I in accordance with the IUPAC classification
method (Brunauer et al., 1940), indicating that the organic sample
was a microporous solid with a relatively small outer surface (Sing
et al., 1985).

The LPGA-N, isotherms of the studied sample were shown in
Fig. 11. In morphology, all curves are convex to the P/Py axis, and the
adsorbed amounts of nitrogen for organic matter samples ranged
from 15 cm>/g to 120 cm?/g. In the light of IUPAC classification, the
LPGA-N; curves of all OM samples are type IV (Brunauer et al.,
1940), which represents the adsorption behavior of mesopores.
The isotherms of this type all have a hysteresis loop induced by
capillary condensation that occurs in the mesoporous structure
(Sing et al., 1985), whose desorption curves include a steep section
closed with the adsorption branch (Fig. 11). These hysteresis loops
of OM samples in Chang 7 member are type H3 on the basis of
IUPAC classification, indicating the existence of uneven slit-shaped
pores. This is consistent with the phenomenon observed under
SEM (Fig. 6i—1).

4.5.2. Surface area and pore volume

The surface areas and pore volumes of OM samples calculated
from LPGA data are shown in Table 6 and Fig. 12, and these pore
structure parameters in the macropore (50—200 nm), mesopore
(2—50 nm) and micropore (<2 nm) ranges are listed separately. The
surface areas of micropores, mesopores and macropores varied in
the range of 1.83—74.19 m?/g, 1.22—9.62 m?/g and 0.48—4.68 m?/g,
respectively. The pore volumes of macropores, mesopores and
micropores in  the ranges of 0.0149-0135 cm’/g,
0.0049—0.0397 cm?/g and 0.0010—0.0250 cm?/g, respectively.

4.5.3. Pore size distribution

PSDs of OM Samples of Chang 7 shale can be seen in Fig. 13. The
PSDs in the range of ~1.5 nm and 1.5—200 nm were calculated using
CO; adsorption data and N, adsorption branch, respectively. Two
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Table 6
Surface areas and pore volumes of OM in Chang 7 shale.

Petroleum Science 20 (2023) 60—86

Sample Surface area (m?/g) Pore volume (cm’/g)
Micropore Mesopore Macropore Total Micropore Mesopore Macropore Total

1 39.61 3.19 1.89 44.69 0.013 0.0122 0.0584 0.0836
2 54.47 1.22 0.48 56.17 0.018 0.0049 0.0149 0.0378
3 7.46 224 1.05 10.75 0.002 0.0069 0.0278 0.0367
4 28.67 3.05 2.09 33.81 0.01 0.0112 0.0616 0.0828
5 1.83 7.64 4.86 14.33 0.001 0.0333 0.135 0.1693
6 47.37 3.77 2.31 53.45 0.016 0.0162 0.0602 0.0924
7 5141 9.62 3.05 64.08 0.015 0.0397 0.0756 0.1303
8 52.03 6.00 2.41 60.44 0.017 0.0236 0.0661 0.1067
9 65.26 4.89 2.05 72.20 0.022 0.0191 0.054 0.0951
10 74.19 8.63 3.13 85.95 0.025 0.025 0.0962 0.1462
(a) 10 (b) 10

9 9

8 8

7 7
% o B Micropore %’_ g
% 5 B Mesopore % 5
(2] 2]

4 Macropore 4

3 3

2 2
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Fig. 12. Bar diagrams of surface areas and pore volumes of OM for Chang 7 shale (a: surface area; b: pore volume).

main peaks were present in the PSD curves of all OM samples at
0.6 nm and 0.8 nm.

4.6. Reflectance of vitrinite and solid bitumen (VR, and BR,)

In this study, the reflectance of the parts with different organic
pore development in the same piece of vitrinite (sample No. 10) or
the same piece of solid bitumen (sample No. 8) was measured and
shown in Fig. 14 and Fig. 15, respectively. It can be found that the
reflectivity measurements at the pores with larger pore size
(Fig. 14a, r (b1) < r (b2) < r (b3)) are lower than that at the pores
with smaller pore size in vitrinite (Fig. 14b, VR, (b1) > VR, (b2) > VR,
(b3)), and the VR, difference between them is larger, reaching more
than 0.5%. Similarly, in the same piece of solid bitumen, the
reflectance measurements of parts with different pore develop-
ment degrees (Fig. 15a, PA (b1) < PA (b2) < PA (b3), PA: pore area)
are significantlly different (Fig. 15b, Eq-R, > BR, (b1) > BR,
(b2) > BR, (b3)).

5. Discussion
5.1. Influence of macerals on pore structure

5.1.1. Qualitative observation

Differences in the pore development between two adjacent OM
in the same view of SEM had been reported in some studies (Curtis
etal., 2011, 2012; Sanei et al., 2015; Tian et al., 2015), suggesting that
the type of macerals has a significant effect on the development of
organic pores. Therefore, the pore development characteristics of
various macerals in Chang 7 shale under SEM were discussed
respectively, including sapropelinite (alginite and bituminite), lip-
tinite (sporinite, cutinite), vitrinite, inertinite and solid bitumen.
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5.1.1.1. Sapropelinite. Sapropelinite contains alginites and bitu-
minite. The pore development characteristics of alginites and
bituminite under SEM can be seen in Fig. 16 and Fig. 17, respectively.
It can be found that the pores of alginite and bituminite are well
developed, often showing a honeycomb aggregation form. The pore
morphology is mostly round or oval, and the pore diameters are
hundreds of nanometers. Moreover, the pores within OM have a
good connectivity, many smaller pores can connect to form several
organic pores with larger diameters (Fig. 16a). In addition, some
microcracks were also developed in the interior of bituminite, with
the width of hundreds of nanometers and the length up to 20 pm
(Fig. 17g and h). Plenty of nanoscale pores of sapropelinite had been
seen in the Longmaxi Shale with uneven size and dense distribu-
tions (Jia et al., 2021). The existing pores of OM in shales before
entering the oil window were defined as primary organic pores,
and the pores formed after entering the oil window were secondary
organic pores (Curtis et al., 2012; Lohr et al., 2015). Some alginites in
sapropelinite have original morphological characteristics (Fig. 16a),
and similar primary pores exist in bituminite (Fig. 17a). Similarly,
Pacton et al. (2006) and Lohr et al. (2015) found that the bituminite
bodies in marine shales also developed primary pores to varying
degrees. According to the phenomenon that most of organic pores
are elliptical or circular, it is believed that the massive generation of
natural gas is an important reason for the formation of OM pores
(Milliken et al., 2013; Schieber, 2013; Pommer and Milliken, 2015).
However, our observations suggest that the primary pores may also
account for a relatively large proportion in sapropelinite.

5.1.1.2. Liptinite. The pore development characteristics of liptinite
under SEM are shown in Fig. 18. The liptinite in Chang 7 shale
consists of sporinites, cutinites and resinites. It can be found that
the pores and microcracks of the liptinite in Chang 7 shales are
rarely developed. At the same time, the maceral composition
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Fig. 13. The PSDs of OM samples in Chang 7 Shale.
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Fig. 15. Reflectance test values of solid bitumen at different pore development locations. (PA (b1) < PA (b2) < PA (b3), BR, (b1) > BR, (b2) > BR, (b3), EqQ-R, = 0.98).

mentioned above also shows that the content of liptinite in Chang 7
shales is low, ranging from 4.8% to 14.3% (Fig. 5). Therefore, the
contribution of liptinite to organic pores in chang 7 shale is mini-
mal. On the other hand, the absence of pores in liptinite also in-
dicates that it lacks primary pores. As for secondary pores, resinite
enters the oil generation threshold earlier (0.35%R,) (Snowdon and
Powell, 1982; Khorasani and Michelsen, 1991), sporinite and
cutinite enter moderately (0.5%R,) (Brooks, 1970), and alginite en-
ters later (0.6%R, ~ 0.7%R,) (Tissot and Welte, 1978). The maturity of
Chang 7 shales ranges from 0.71% to 1.23%, which means that all
kinds of liptinite have entered the stage of oil generation, but not
yet entered the stage of abundant gas generation. Therefore, the
secondary pores are not well developed. However, as a structure-
altered maceral, liptinite can extensively develop hydrocarbon-
bubble pores (the most common secondary pores) in post-mature
marine shales (Yang et al., 2016a).

5.1.1.3. Vitrinite. The pore development characteristics of vitrinite
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under SEM are shown in Fig. 19. A certain amount of microcracks
and pores can be found in vitrinite. The microcracks developed
internally are hundreds of nanometers in width and tens of mi-
crometers in length (Fig. 19a—c). The pores are mostly
hydrocarbon-bubble pores and distributed sporadically (Fig. 19d).
With round or elliptical pore morphology and the size of mesopores
to macropores. Guo et al. (2018) also found cracks in the vitrinite of
Chang 7 shale, which was explained as the fracture of vitrinite
caused by compaction. Nevertheless, Yang et al. (2016a) regarded
the crack developed in vitrinite as a hydrocarbon-shrinkage crack
caused by the volumetric contraction of vitrinite. As for the pores in
vitrinite, they are usually rarely found, whether in shales (Yang
et al., 2019; Jia et al., 2021) or in coals (Everson et al., 2008; Giffin
et al., 2013; Zhao et al,, 2014; Cardott and Curtis, 2018). However,
different types of pores (e.g. blowholes, breccia pores and broken
pores) can still be observed in vitrinite of the anthracite of Lopin-
gian (Shan et al.,, 2018). Furthermore, a smaller average nanopore
diameter in vitrinte will influence its micro-mechanical properties,



P. Pang, H. Han, X.-C. Tan et al.

e ——
i =

Ty es

Petroleum Science 20 (2023) 60—86

Fig. 16. Pores within alginite under SEM. (a, Yan56—2996.5; b, d, Zheng3-866.74; c, Zhuang233—1798.7).

because more efficient load distribution and resulting greater
deformation resistiance can cause the decrease of the modulus
(Vranjes-Wessely et al., 2020).

5.1.14. Inertinite. The pore development characteristics of iner-
tinite under SEM can be seen in Fig. 20. The composition of iner-
tinite in Chang 7 shales mainly includes fusinites and semifusinites.
As the most well-preserved macerals of plant cells, fusinite devel-
oped significant primary pores that retain biological structure,
which have irregular or elliptical pore shapes and pore sizes
ranging from several microns to ten microns, such as plant cell
lumens (Fig. 20a and b). At the same time, a certain amount of
secondary pores generated in the process of hydrocarbon genera-
tion also exist in inertinite, which are mostly hundreds of nano-
meters in diameter and distributed in a dispersed manner
(Fig. 20c—e). In addition, there are a small number of semifusinites
without pores (Fig. 20f). So far, the pores of inertinite in shales and
coal seams have been reported in many studies (Everson et al.,
2008; Mastalerz et al., 2013; Coetzee et al., 2015; Yang et al,
2017; Jia et al., 2021; Lin et al., 2021). Similarly, Curtis et al.
(2012) also proved the existence of primary fibroite (e.g., plant
cell lumens) in Woodford Shale, a marine formation. Moreover,
Shan et al. (2018) reported that, in the anthracite of Lopingian, the
primary pores of plant tissue pores are prevalent in inertinite and
rare in vitrinite. And secondary pores such as blowholes and cracks
are more easily observed in vitrinite than inertinite. Similar con-
clusions were also reported in Jing et al. (2021), the pore structure
of vitrinite and inertinite has obvious difference in the Permian coal
from the Bowen Basin, Australia. Inertinite-rich sample has more
pores, higher mesopore content and better connectivity than
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vitrinite-rich sample. These phenomena are highly consistent with
our observations. In terms of pore size, inertinites contain more
macropores (30 nm—10 pm in diameter) and less micropores
(<2 nm) than vitrinites (Unsworth et al., 1989). As for the pore
morphology in inertinite, it is controlled by the subclass of mac-
erals. The pores in fusinite are large and elongated, while the
morphology of macrinite pores is comparatively smaller and
rounder (Giffin et al., 2013). In type II and type III kerogens rich in
vitrinite and inertinite, the pores in organic matter particles are
particularly enriched, and the micropore volume of OM is the
largest, which has a good linear correlation with maturity
(Chalmers and Bustin, 2007, 2008).

5.1.1.5. Solid bitumen. The pore development characteristics of
solid bitumen under SEM are shown in Fig. 21. The pores in solid
bitumen were densely distributed with an angular pore shape and
pore sizes ranging from tens of nanometers to hundreds of nano-
meters. Some micro-cracks developed at the edge of solid bitumen
and inorganic minerals or in solid bitumen. The width of the cracks
is hundreds of nanometers, and the length can exceed 10 pm
(Fig. 21f). At present, amounts of nanoscale pores have been also
found in the solid bitumen of marine shales with high maturity and
coal seams (Loucks et al., 2009; Mastalerz et al., 2013; Cardott and
Curtis, 2018; Ma et al., 2020; Yao et al., 2021). Cao et al. (2020b)
found that spongy pores are pervasion in solid bitumen of the
Woufeng-Longmaxi shales in Guizhou, China, whose diameters span
from nanometers to micrometers. Similarly, Hu et al. (2020) re-
ported that solid bitumen is a porous component in the Longmaxi
shales and amounts of sponge-like pores with diameter range of
8.4—1392.6 nm can be observed in solid bitumen under SEM. Even,
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Fig. 17. Pores within bituminite under SEM. (a, b, Yan56—2978.5; ¢, Zhuang233-1790; d, Honghe21-1676.69; e, f, Zhuang233—1798.7; g, Huan317—2474.3; h, Yan56—2963.1).
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Fig. 18. Liptinite without visible pores under SEM. (a, Honghe21-1676.69, sporinite; b, Zheng3-866.74, sporinite; ¢, Honghe21-1676.69, cutinite; d, Huan317—2474.3, cutinite).

pores with various forms (such as pendular pores, spongy pores
and interface pores) were found in solid bitumen from many strata,
including Cambrian, Ordovician, Silurian, Upper Visean and Triassic
(Misch et al., 2019). With regard to organic pores in solid bitumen,
some researchers believe that the main mechanism of its formation
is that the gas generated by bitumen cracking cannot be effectively
discharged (Chalmers and Bustin, 2017). As mentioned by Piane
et al. (2018), solid bitumen was originally infiltrated into mineral
pore space as a liquid phase, which led to the formation of an
organic network. With the increase of maturity, gaseous hydro-
carbons were generated from solid bitumen during secondary
thermal cracking process, resulting in the formation of organic
pores.

5.1.2. Quantitative characterization

The characterization of PSDs of different macerals in Chang 7
shales are shown in Fig. 22. The main peaks of PSDs of alginite and
bituminite were in the range of 100—200 nm (Fig. 22a and b), with
average pore sizes of 316.56 nm and 418.86 nm, respectively
(Table 7). The pore diameters of spoinites, cutinites and resinite are
relatively large, mostly in the range of 300—700 nm (Fig. 22c—e),
with average pore sizes of 800.94 nm, 419.69 nm and 751.01 nm,
respectively. Vitrinite and fusinite have a wide PSD, with a certain
amount of organic pores ranging from 0 nm to 2500 nm, and the
average pore sizes are 601.95 nm and 643.85 nm, respectively. And
the main peak range of their PSDs is 200—300 nm (Fig. 22f and g).
As for solid bitumen, its PSD is quite concentrated, mainly distrib-
uted in the range of 0—200 nm, and the average pore size is
215.57 nm. The pores in other diameter scales are less developed
(Fig. 22h). Therefore, according to the main peak range of PSDs of
various macerals, the order of organic pore diameter from small to
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large is solid bitumen, bituminite, alginite, vitrinite, fusinite and
liptinite. Hu et al. (2017) reported that organic pore diameter was
varied in the range of 5—1021 nm and averaged 68 nm in the
Waufeng-Longmaxi shale. Wang et al. (2020) reported that the main
range of organic matter pore size distribution is 100—200 nm in the
Longmaxi shale. In addition, similar PSD patterns of organic pores
have been found in many studies (Hu et al., 2017; Guan et al., 2019).
All these researches focus on describing the PSD of organic pores as
a whole, but ignore the PSD of organic pores derived from various
macerals.

Plane porosity of macerals for studied samples was shown in
Table 8 and Fig. 23. The plane porosity of organic pores in alginite
and bituminite were in the ranges of 7.23%—20.74% and 3.19%—
26.70%, with an average of 16.03% and 11.09%, respectively. The
sporinites, cutinites and resinites in liptinite are not only low in
content, but also have very poor development of organic pores,
with an average plane porosity of only about 2%. The plane porosity
of vitrinite ranges from 0.65% to 3.54% and averages 2.13%. And, the
plane porosity of fusinite and solid bitumen were in the ranges of
1.68%—25.61% and 1.91%—21.56%, with an average of 12.05% and
7.98%, respectively. It can be found that the quantitative calculation
results are consistent with the organic pore development charac-
teristics of each macerals observed qualitatively by FE-SEM. The
average plane porosity was used to evaluate the development de-
gree of OM pores in macerals, and the order from high to low was
alginite, fusinite, bituminite, solid bitumen, vitrinite and liptinite.
Among them, alginite, fusinite and bituminite have certain primary
pores, while solid bitumen only produces secondary pores. Hu et al.
(2020) reported similar results in the overmature shales of Long-
maxi Formation. The plane porosities of alginite and solid bitumen
range from 111% to 16.7% and 11.6%—14.7%, respectively.
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Fig. 19. Cracks and pores within vitrinite under SEM. (a, Huan317-2468.3; b, Yan56—2978.5; ¢, Huan317—2474.3; d, Zhuang233—1798.7; e, Yan56—2963.1; f, Honghe21-1676.69).

Meanwhile, Loucks et al. (2009) and Misch et al. (2019) have also
observed a mass of primary pores in alginite whose morphology is
consistent with biological structure. As for solid bitumen, the
random occurrence of secondary gas-generated pores with a
sponge-like pattern is the most prevalent in it. Different from the
typical marine shale, the pores of solid bitumen in Longmaxi shales
have larger diameters and higher abundance than those in bitu-
minite (Cao et al., 2020b; Hu et al., 2020). However, in our study, the
size and abundance of solid bitumen pores are lower than those of
bituminite in Chang 7 shales, which is attributed to the low
maturity (0.71% < Eq-R,<1.23%) of Chang 7 shale. At this stage, the
development of organic pore in solid bitumen is limited due to the
lack of gaseous hydrocarbons generation.

In addition, the relative contributions of macerals to organic
pores were calculated using Eq. (2).

Cmacera]s = (P Amacerals/ P AOM) x 100 (2)

where Cmacerals 1S the relative contribution (%) of macerals to
organic pores, PAmacerals 1S the pore area (m?) of macerals, PAom
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represents total pore area (m?) of all OM. The calculated relative
contributions of macerals to the organic pore area were shown in
Table 9 and Fig. 24. The relative contribution of alginite and bitu-
minite to organic pores varies from 2.93% to 59.44% and 18.29%—
91.36%, with an average value of 36.97% and 56.62%, respectively.
The contributions of sporinite, cutinite and resinite to organic pores
are quite low, with an average contribution of only about 4%. The
relative contribution of vitrinite, fusinite and solid bitumen to
organic pores vary in the ranges of 0.05%—3.77%, 1.86%—48.61% and
1.20%—33.83%, respectively. From Fig. 24, it can be found that
bituminite contributes the most to the pores of OM, followed by
solid bitumen and fusinite. Current research almost focuses on the
relative contribution of inorganic minerals and organic matter to
shale pore volume (e.g. Han et al., 2019; Chen et al., 2021; Gao et al.,
2021). However, the relative quantitative contributions of various
macerals in OM to organic pores has not been reported in detail.
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Fig. 20. Pores within inertinite under SEM. (a, Yan56—2963.1; b, e, Honghe21-1676.69; c, Zheng3-866.74; d, Jinghe13—1357.23; f, Zhuang233—-1798.7).

5.2. Influence of maturity on pore structure

To analyze the thermal evolution characteristics of organic pores
of prevalent macerals in Chang 7 shales, the relationship between
plane porosity and equivalent vitrinite reflectance (Eq-R,) was
analyzed in Fig. 25. There is a certain positive correlation between
the plane porostiy and Eq-R, of the bituminite (Fig. 25a), suggesting
that the pores of bituminite become more enriched with the pro-
cess of hydrocarbon generation and expulsion during thermal
evolution. In the thermal evolution process, the plane porosity of
fusinite is mainly distributed in the range of 20%—28% and 1%—7%
(Fig. 25c). Based on the cognition of SEM observation, it is specu-
lated that the former is dominated by relatively developed primary
cellular lumen pores (Fig. 20a and b), while the latter mainly rep-
resents secondary pores formed in the process of hydrocarbon
generation during thermal evolution (Fig. 20c—e). At the same time,
a certain positive correlation between plane porosity and vitrinite
reflectance in the latter also verifies this conjecture. As for the
organic pores of vitrinite and solid bitumen, no obvious thermal
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evolution law was found (Fig. 25b, d). At first, most scholars
believed that as the organic matter was thermally decomposed to
generate and discharge hydrocarbons, the decomposed part would
form pores (Jarvie et al., 2007; Chalmers and Bustin, 2008; Sisk
et al., 2010; Bernard et al., 2012; Pommer and Milliken, 2015).
Therefore, the development degree of OM pores should increase
with the increase of hydrocarbon conversion rate. Some scholars
have established the prediction model of organic pore development
according to the theory of hydrocarbon generation kinetics (Modica
and Lapierre, 2012; Romero-Sarmiento et al., 2013; Chen and Jiang,
2016). However, the experimental results show that the develop-
ment degree of organic pores does not increase linearly with the
increase of maturity. For example, Curtis et al. (2012), when
studying the variation of OM pores in Woodford shale with thermal
evolution, found that there were almost no organic pores in shale
samples when R, was less than 0.9%, organic pores showed an
irregular change when R, was between 1.23% and 2.0%, and no OM
pores were observed when R, was more than 2.0%. Fishman et al.
(2012) also found that there was no significant relationship
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Fig. 21. Well-developed pores within solid bitumen under SEM (a-e, Yan56—2996.5; f, Zhuang233-1790).

between organic pore development and thermal evolution in
organic-rich mudstones of the Upper Jurassic Kimmeridge Clay
Formation, North Sea. In general, although thermal evolution has
an important effect on the formation of organic pores, there is no
clear linear relationship between organic pore development and
maturity. Our results also show that thermal maturity is not the
only factor controlling the development of OM pores, and maceral
type has a significant influence on the formation of OM pores, too.

5.3. Comparsion between the results of FE-SEM and LPGA

Since the characterization range of LPGA is 0—200 nm, its results
can be used to verify the characterization effect of SEM in the
smaller nanometer range. Taking into account the 5 nm resolution
of SEM (Chalmers et al., 2012), the characterization results derived
from FE-SEM and LPGA with the range of 5—200 nm were
compared in our study. It can be found that with the increase of
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pore structure parameters (pore volume and surface area) calcu-
lated by LPGA, the plane porosity characterized by SEM always
maintained a low value (Fig. 26). This confirms that the organic
pores distributed in the range of 5-200 nm cannot be fully iden-
tified by SEM. Therefore, the combination of iCLEM and LPGA to
characterize organic pores is recommended in our study. At pre-
sent, the combined use of SEM and gas adsorption to characterize
nanoscale pore structure has been reported in some literatures
(Yang et al., 2016b; Wang et al., 2017, 2021; Zhou et al., 2018; Gou
et al., 2019; Liu et al., 2019; Zhang et al., 2020b; Han et al., 2022).
However, the combination of iCLEM and gas adsorption to char-
acterize the pores in macerals has yet to be popularized.

5.4. Effect of pore structure on reflectance

Vitrinite reflectance was considered as the most reliable
parameter reflecting the thermal evolution degree of sedimentary
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Table 7
Statistical results of organic pores of macerals.
OM types Total pore counts Minimum pore diameter (nm) Maximum pore diameter (nm) Average pore diameter (nm)
Alginite 1473 53.7 2272 316.56
Bituminite 3509 375 2493 418.86
Sporinite 34 416 2014 800.94
Cutinite 101 228 1063 419.69
Resinite 15 386 1835 751.01
Vitrinite 216 374 2396 601.95
Fusinite 651 79.2 2473 643.85
Solid bitumen 1835 32.7 2481 215.57
Table 8
Plane porosity of organic pores of macerals for Chang 7 shale samples.
Sample Alginite Bituminite Sporinite Cutinite Resinite Vitrinite Fusinite Solid bitumen
(%) (%) (%) (%) (%) (%) (%) (%)
1 20.12 23.64 3.09 20.79
2 7.23 4.71 2.09 3.65
3 6.44 2.59 11.40
4 10.98 1.70 2.68 0.65 1.86 294
5 3.19 2.76 1.68
6 7.29 1.19 25.61 21.56
7 9.59 1.82 3.54 4.83 6.84
8 20.74 7.61 2.95 22.02 7.57
9 10.74 143 1.64 23.97
10 26.70 191 5.05 1.91
Average value 16.03 11.09 1.76 2.76 2.05 2.13 12.05 7.98
30 1.4
E=75] Sporinite M Cutinite Resinite M Alginite I Bituminite I3 Vitrinite E=3 Fusinite EEM Solid bitumen —&— Eqg-R,
X
d?‘: o
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Fig. 23. Plane porosity of organic pores of macerals for studied samples.
Table 9
Relative contributions of macerals to OM area of the studied samples.
Sample Alginite (%) Bituminite (%) Sporinite (%) Cutinite (%) Resinite (%) Vitrinite (%) Fusinite (%) Solid bitumen (%)
1 293 54.97 047 41.64
2 59.44 18.29 2.65 19.63
3 63.65 2.52 33.83
4 67.54 7.49 6.66 1.89 1.86 14.58
5 64.18 4.50 31.31
6 47.26 2.56 48.61 1.57
7 80.80 0.36 3.64 8.46 6.74
8 48.55 25.94 0.05 15.10 1036
9 5223 0.67 3.77 43.33
10 91.36 2.94 451 1.20
Average value 36.97 56.62 3.92 4.50 3.66 225 21.93 12.56
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Fig. 24. Relative contributions of macerals to OM pores of the studied samples.

organic matter (Taylor et al, 1998; Corcoran and Doré, 2005;
Dembicki, 2009; Sudrez-Ruiz et al., 2012). The plane porosity at
each test point in vitrinite and solid bitumen was calculated using
JMicroVision and listed in Table 10, and the relationship between
plane porosity and reflectance measurements was plotted in Fig. 27.
It can be seen that in the same piece of organic matter (vitrinite or
solid bitumen), the plane porosity of organic pores has a good
negative correlation with the measured value of reflectance.
Moreover, the effect of organic pores on vitrinite reflectance is
greater than that of solid bitumen (Fig. 27), which may be related to
the more homogeneous and smooth surface structure of vitrinite
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compared with solid bitumen. Because the surface which was
originally more homogeneous and smoother has a more obvious
contrast of roughness after the formation of organic pores. Some
studies have found that the reflectance of vitrinite with a rougher
surface in the same sample is lower than that of vitrinite with a
smoother surface (Borrego et al., 2006; Grobe et al., 2017), and the
reflectance of solid bitumen is similarly affected (Sanei et al., 2015,
2016; Mastalerz and Schieber, 2017; Valentine et al., 2019). The
development of OM pores is bound to affect the surface roughness
of vitrinite and solid bitumen. The larger the pore size and the more
developed the pores, the rougher the surface of vitrinite and solid
bitumen, resulting in a lower reflectance value. Based on this effect,
when measuring the reflectivity of vitrinite and solid bitumen, the
measurement point should be as small as possible and the test
place should be selected where the pores are not developed, so as
to avoid the influence of organic pores on the test results.

6. Conclusions

To quantitatively evaluate the pore characteristics of various
macerals in Chang 7 lacustrine shales, iCLEM and LPGA were per-
formed on macerals and organic matter samples, respectively. And
the relative contributions of macerals to organic pores were esti-
mated. On the basis of the geochemical parameters, the thermal
evolution law of organic pores in macerals was analyzed. Finally,
the influence of organic pores on reflectance of vitrinite and solid
bitumen was discussed by performing reflectance measurement
experiment. Main conclusions of this research are as follows.
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Fig. 25. Relationship between plane porosity and maturity of pores in common macerals. (a: Bituminite; b: Vitrinite; c: Fusinite; d: Solid bitumen).
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Table 10

Reflectance and plane porosity at test points of vitrinite and solid bitumen.

Macerals Plot Plane porosity (%) Reflectance (%)
Vitrinite b1 1.16 1.484

b2 7.86 1.176

b3 13.79 0.92
Solid bitumen b1 2.70 0.786

b2 8.98 0.570

b3 26.30 0.434

(1) The organic pores of Chang 7 shale are mostly circular or
elliptical in morphology, usually aggregated in a honeycomb
shape. The organic pores are mainly distributed in the range
of 100—400 nm, and the average plane porosity of macerals
is 10.13%.

(2) Among various macerals, sapropelinite preserved a certain
amount of organic pores, but almost no pores existed in
liptinite. There was a small amount of microcracks and pores
in vitrinite, and a large number of primary pores that
retained plant structure can be seen in fusinite. Due to the
process of hydrocarbon generation and expulsion, solid
bitumen formed amounts of organic pores and microcracks.

(3) The order of organic pore diameter from small to large is
solid bitumen, bituminite, alginite, vitrinite, fusinite and
liptinite, and the order of pore development degree from
high to low was alginite, fusinite, bituminite, solid bitumen,
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Fig. 27. Relationship between reflectance and plane porosity in vitrinite and solid
bitumen.
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vitrinite and liptinite. The contribution of organic pores
mainly comes from bituminite, solid bitumen and fusinite. As
for the controlling factors of organic pore development,
thermal maturity is not the only factor, and maceral type also
has a significant influence on the formation of organic pores.

(4) The development of organic pores (an increase in pore size
and pore number) enhances the surface roughness of vitri-
nite or solid bitumen, resulting in an underestimate of their
reflectances.
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