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a b s t r a c t

Accurate sales prediction in filling stations is the basis to fill in the refined oil in time and avoid the out-
of-stock as much as possible. Considering the defect of great “lag” in the general time series model, this
paper summarizes the multiple factors that influence the oil sales and develops a multivariable long
short-term memory (LSTM) neural network, with the hyper-parameters being improved by the genetic
algorithm (GA). To further improve the prediction accuracy, the proposed LSTM neural network is
generalized to bidirectional LSTM (BiLSTM), in which the impact of future factors on present sales can be
taken into account by backward training. Finally, different LSTM structures and genetic algorithm pa-
rameters are tested to discuss their impact on prediction accuracy. Results demonstrated that genetic
algorithm improved BiLSTM model is superior to extreme gradient boosting, ARIMA, and artificial neural
network, having the highest accuracy of 89%.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

1.1. Background

With the continuous progress of global industrialization and
urbanization, the demand for energy is growing more and more
rapidly (Jiang and Lin, 2012). Energy is vital to the sustainable
development of any country, whether it is social, economic or
environmental. As an important part of primary energy, refined oil
is regarded as a strategic commodity in the international commu-
nity and enables global economic growth. It is widely used in au-
tomobiles, motorcycles, speedboats, helicopters, agricultural,
forestry aircraft and other transportation tools, becoming an
increasingly important role in daily life. As the critical urban
infrastructure to provide energy supplies, filling station retail ac-
counts for more than 70% of the total sales of refined oil.

The task of the supply chain is to transport refined oil products
from refineries to oil depots by pipelines or trains and then to filling
stations through trucks (Liang et al., 2012; Wang et al., 2021). Ac-
curate prediction of energy demand can not only effectively capture
the trend of energy demand, but it also helps suppliers make
y Elsevier B.V. on behalf of KeAi Co
accurate decisions (Suganthi and Samuel, 2012). Similarly, the ac-
curate prediction of filling station sales is significant for the in-
ventory management and distribution planning of petroleum
enterprises since it provides the basis for replenishing the oil timely
to avoid out-of-stock (Wang et al., 2015; Wei et al., 2021). However,
most of the existing approaches only consider historical sales and
time variables and deal with the time series data by using average
value or linear models (Abdel-Aal and Al-Garni, 1997). Actually, the
sales at filling stations are affected by multiple factors such as
weather, week or holiday.
1.2. Related work

With the rapid development of science and technology, many
forecasting methods have been put forward to improve the accu-
racy of prediction. Recent studies have comprehensively summa-
rized energy prediction models proposed by predecessors
(Suganthi and Samuel, 2012; Deb et al., 2016). The current main-
stream prediction methods are as follows: time series model,
regression-based model, grey prediction model, fuzzy logic
method, BP neural network, support vector regression and LSTM
neural network. Among time series models, ARIMA (Geurts et al.,
1977) is the most common model. The characteristics and applied
research fields of the above methods are summarized in Table 1:
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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Table 1
Summary of the above methods.

Methods Data trend
characteristics

Forecast period The number of variables Literature

Linear Nonlinear Short term Long term Multivariate Univariate

Regression-based ✓ ✓ ✓ Sahraei et al. (2021)
Bianco et al. (2009)
Ciulla and D'Amico (2019)

Time series ✓ ✓ ✓ Yuan et al. (2016)
Ediger and Akar (2007)
Wang et al. (2012)

Grey prediction ✓ ✓ ✓ Huang et al. (2021a)
Huang et al. (2021b)
Wang et al. (2018)

Fuzzy logic ✓ ✓ ✓ Efendi et al. (2015)
Sadaei et al. (2017)
Torrini et al. (2016)

BP neural network ✓ ✓ ✓ Ekonomou (2010)
Deb et al. (2016)
Deb et al. (2015)

SVM ✓ ✓ ✓ Zhu et al. (2015)
Xu et al. (2021)
Ma et al. (2018)

LSTM ✓ ✓ ✓ ✓ (Asala et al., 2017)
Gupta and Pandey (2018)
Asala et al. (2019)
Chebeir et al. (2019)
Wei et al. (2019)
Laib et al. (2019)
Lu et al. (2021)

Note: The symbol “√” means the relative superiority of predictive performance.
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The sales volume of filling stations which is affected by a variety
of objective factors has obvious nonlinear characteristics. The pre-
dictive problem in this paper can be deal with a short-term pre-
diction. Among the above methods, the BP neural network and the
fuzzy logic model meet the prediction requirements of this prob-
lem, which is non-linear and affected by multiple factors. However,
the fuzzy logic model is not applicable because the data of this
problem are all determined and the BP neural network is easy to
overfit.

Hochreiter and Schmidhuber (1997) was the first to propose
LSTM neural network for processing and predicting important
events with very long intervals and delays in time series. LSTM
performs well in multi-feature regression due to its unique gating
mechanism. It can automatically decide which information to
remember or forget, so as to avoid the influence of redundant
features or the low accuracy caused by over-fitting.

Nowadays, LSTM has been widely applied to address the limi-
tations of traditional predictive methods in the field of energy
forecasting. Tulensalo et al. (2020) used LSTM model to learn the
long-term relationship of hourly time series data through three
features which are electricity market, local weather and calendar
and predict the total power system grid loss. Sagheer and Kotb
(2019) proposed the deep LSTM(DLSTM) model, which avoids the
limitations of shallow neural network architecture by super-
imposing more LSTM layers when predicting long-interval time
series data sets. Additionally, genetic algorithm (GA) is applied to
optimize the configuration of DLSTM architecture. Zheng et al.
(2020) proposed a combined model based on LSTM and particle
swarm optimization (PSO) for multi-regional solar power output
prediction. In this paper, sensitivity analysis of the model is con-
ducted and different LSTM structures are compared. Then, PSO is
used for LSTM hyperparameter optimization. Moreover, results
indicate that the proposed prediction model outperforms basic
long short-term memory, artificial neural network and extreme
gradient boosting. Laib et al. (2019) used the LSTMmodel to predict
natural gas consumption in different regions of the country. It is
2484
worthy to mention that the consumption of different regions of the
country is firstly analyzed by clustering to reduce the non-
stationarity of the time series. In addition, LSTM is used to pre-
dict the next day's gas consumption considering historical factors,
meteorological factors (such as temperature, wind speed, humidity
and sunshine) and economic factors (oil price, number of cus-
tomers, GDP and gas price). A case study of natural gas consump-
tion in Algeria proves the effectiveness of this method. More
recently, Li and Becker (2021) proposed a hybrid model based on
LSTM and feature selection algorithm for day-ahead electricity
price prediction under consideration of market coupling. The
importance of features was evaluated based on Shapley value
before LSTM model which was used for electricity price prediction.

Since the sale data of filling stations has the features of great
fluctuation and nonlinearity, the performance of traditional time-
series models such as ARIMA become poor and cannot meet the
accuracy requirements of forecasting. At present, the global in-
dustry is experiencing the wave of artificial intelligence, and the
petroleum industry is also undergoing intelligent transformation.
LSTMmodel, as one of the best time series prediction models in the
field of artificial intelligence of deep learning, can effectively deal
with nonlinear time series prediction by adding other features to
assist prediction. At the same time, different LSTM structures are
compared to select the optimal LSTM structure. Moreover, we
consider the influence of future factors on present in the prediction
model by using BiLSTM. Finally, the optimal hyperparameters
cannot be obtained by manual hyperparameter tuning due to the
large number of hyperparameters in LSTM model, so GA is used to
automate hyperparameter tuning to further improve the accuracy
of the model.
1.3. Contributions and paper organization

The contributions of this paper to the field of filling station sales
forecasting are the following:
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(1) By introducing the LSTM model, this paper solves the low
prediction accuracy problem of traditional time series model
such as ARIMA. In addition, the LSTM model can effectively
reduce the effect of lag caused by excessive fluctuation by
adding the objective factors that affect the sales of filling
stations to assist prediction.

(2) The BiLSTMmodel can further improve accuracy because the
influence of future on present can be taken into account in
the backward training.

(3) Due to the large number of hyperparameters in LSTMmodel,
the optimal hyperparameters often cannot be obtained by
manual hyperparameters tuning. For this reason, GA is used
to automate hyperparameters tuning to further improve the
accuracy of the model.

(4) In this paper, the sales volume of three years of a filling
station in Kunming, China is taken as a data case. We
compare the proposed model with other algorithms to prove
the superiority of it. The results show that its performance is
the best and accuracy can up to 89%.

The rest of the paper is structured as follows: Section 2 describes
the characteristics of the problems solved in this paper. Section 3
introduces the processing methods of text variables and the prin-
ciples of GA and LSTM. Section 4 is the experimental part, which
respectively introduces feature extraction, advantages of Embed-
ding on dimension reduction of word vector, the influence of
different LSTM structures on prediction accuracy and comparison
between the proposed model and other algorithms. Section 5 gives
the conclusions and suggestions for future research.

2. Problem description

The prediction of filling station sales is an indispensable part of
the secondary logistics transportation of refined oil products. Ac-
curate prediction can help suppliers make efficient distribution
plans for the next day. However, the prediction of sales volume has
the following difficulties:

(1) The sales volume of filling stations fluctuates greatly and has
obvious nonlinear characteristics, which increases the diffi-
culty of prediction. Therefore, the characteristic of large
fluctuation will make a prediction have the defect of great
“lag”, which leads to part of the prediction results need to be
manually adjusted according to experience.

(2) The sales forecasting problem of filling stations is a short-
term forecasting problem. It only needs to forecast the
sales of the next day.

(3) The sales of filling stations are affected by a variety of
objective factors, such as holidays, weeks, weather, temper-
ature, oil prices, etc. For example, due to the Spring Festival,
the sales before the Spring Festival period are much higher
than normal sales, while sales during the Spring Festival are
much lower than normal sales. For another example, week-
days from Monday to Friday and weekends will affect peo-
ple's travel plans and thus affect the sales of filling stations. In
addition, the extreme weather affects people's daily travel
and lead to a decline in sales.

(4) The periodicity of filling station sales is not obvious.
(5) Future factors have an impact on the present. For example, if

people have holiday travel plans tomorrow, they will choose
to fuel up the day before the trip.

In case of these difficulties, the prediction model should be
multivariate, and the goal of adding objective factors which affect
sales volume is to capture the relationship between sales volume
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and these objective factors. However, various methods among the
multivariate prediction methods, such as BP neural network or
SVM, are easy to over-fit because of the high feature dimensions. On
the contrary, it is widely demonstrated that LSTM is suitable for
processing and predicting important events with very long in-
tervals and delays in time series and performswell in the prediction
of higher dimensions. Therefore, LSTM model is used in this paper,
and the characteristics of holidays, weeks, weather, temperature
and oil price are added to assist in predicting the sales of filling
stations. Finally, GA is used to find the optimal hyperparameters of
LSTM to further improve the model accuracy.

The heat map of Fig. 1 will be explained below. Weather: red for
sunny days, orange for cloudy days, yellow for cloudy days, green
for rainy days, and the darker the green, the heavier the rain. Oil
price: the darker the red, the higher the oil price, and the darker the
green, the lower the oil price. Holidays: green represents normal
days and red represents holidays. Temperature: the darker the red,
the higher the temperature, and the darker the green, the lower the
temperature.

Meanwhile, in Section 4.3, this paper compares the influence of
different LSTM structures on the prediction accuracy and finds that
bidirectional LSTM is superior to unidirectional LSTM in the pre-
diction work. The explanation of this result is as follows. As shown
in Fig. 1, it is assumed that the historical sales of the first seven days
and other auxiliary features are used to predict the sales of the next
day. The characteristic vectors of the first seven days are set
respectively xt�7;xt�6;xt�5;xt�4;xt�3;xt�2;xt�1. We assume that the
weather and week conditions are shown as Fig. 1. Since the bidi-
rectional LSTM model has the characteristics of forward and
backward training, in backward training, it can learn the rules that
cannot be learned by forward training. When people learn from the
weather forecast that the weather is bad tomorrow, they will
choose to refuel on that day. Or when they have holiday travel plans
tomorrow, they will choose to refuel on the day before the trip.
Bidirectional LSTM can learn these rules in backward training, but
unidirectional LSTM cannot. For example in Fig. 1, in backward
training from day xt�4 to day xt�5, it is a thunderstorm on day xt�4.
If the sales volume of day xt�5 is higher than that of day xt�4,
BiLSTM could learn the above rules. Similarly, in backward training
from day xt�2 to day xt�3, if day xt�2 is a holiday and sale volume of
day xt�3 is higher than that of day xt�2, BiLSTM can also learn the
above rules.

3. Methodology

In this paper, the data is daily and a total of 940 days’ data of a
filling station in Kunming from 2019 to 2021 are selected, with 70%
as training set and 30% as test set. Firstly, this paper carries on the
feature extraction. We select the objective factors, which affect
filling station sales more to make auxiliary projections. Then, we
vectorize the text-type factor. In other words, convert text-type
factor variables to word vectors. In addition, this paper compares
different LSTM structures and use GA to optimize the hyper-
parameters. Finally, the GA-LSTMmodel with the best performance
is also comparedwith other algorithms to prove the effectiveness of
the proposed method. The flowchart of this paper is shown in
Fig. 2:

3.1. Word to vector

The weather and week auxiliary features of this paper are text-
type variables that need to be converted into word vectors. One-hot
encoding is carried out for text encoding of weather and week, and
dimension reduction is carried out using Embedding layer. More-
over, the dimension is reduced through the weight matrix



Fig. 1. Multivariate prediction with objective factors.

Fig. 2. Flowchart.

S.-Y. Pan, Q. Liao and Y.-T. Liang Petroleum Science 19 (2022) 2483e2496

2486



S.-Y. Pan, Q. Liao and Y.-T. Liang Petroleum Science 19 (2022) 2483e2496
calculation of Embedding layer. Then, the Embedding matrix as-
signs a fixed length vector to each word and the length of vectors
can be set by ourself. The principle of the embedding layer is shown
in Fig. 3:

Suppose there are m weather texts with n weather types, and x
week texts with y week types. Then, the one-hot encoding vectors
of each weather text qa and each week text pb are respectively qa ¼
½qa1;qa2;…;qan�;a ¼ 1;2;…;m; pb ¼ ½pb1;pb2;…;pby�;b ¼ 1;2;…;x.
Finally, the weather vector matrix Q and the week vector matrix P
are as follows:

Q¼

2
6664

q11 q12

q21 q22
/

q1n

q2n
« 1 «

qm1 qm2 / qmn

3
7775;P¼

2
66664

p11 p12

p21 p22
/

p1y

p2y

« 1 «

px1 px2 / pxy

3
77775;Q2Rm�n;P2Rx�y

(1)

Embedding layer which needs to learn weight matrix is essen-
tially a neural network with a hidden layer. If the dimension of
weather vector matrix Q is reduced from m�n to m� k, that is, m
vectors whose dimension is 1�n are reduced to m vectors whose
dimension is 1� k, and the weight matrix W1 is:

W1 ¼

2
6664

a11 a12

a21 a22
/

a1k

a2k
« 1 «

an1 an2 / ank

3
7775;W12Rn�k (2)

Similarly, to reduce the dimension of week vector matrix P from
dimension x� y to x� h, the weight matrix W2 is:

W2 ¼

2
6664

b11 b12

b21 b22
/

b1h

b2h
« 1 «

bx1 bx2 / bxh

3
7775;W22Ry�h (3)

The new weather vector matrix Q 0 and the new week vector
matrix P0 obtained by Embedding layer for dimension reduction
are:
Fig. 3. Word t
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Q 0 ¼ Q �W1 ¼

2
6664

q11 q12

q21 q22
/

q1k

q2k
« 1 «

qm1 qm2 / qmk

3
7775;Q 02Rm�k (4)

P0 ¼ P �W2 ¼

2
6664

p11 p12

p21 p22
/

p1h

p2h
« 1 «

px1 px2 / pxh

3
7775;P02Rx�h (5)

In this paper, the week feature is reduced from 7 dimensions to
1 dimension through the Embedding layer, while the weather
feature is reduced from 8 dimensions to 2 dimensions.
3.2. LSTM model

The traditional Recurrent Neural Network (RNN) is one of the
recursive neural network models that can be applied for modeling
of sequential data, but it will be difficult for RNN to transmit in-
formation from the earlier time step to the later time step. To
address this issue, LSTM was proposed to solve the short-term
memory problem of RNN. It has an internal mechanism called
“gate”. The “gate” structure will learn which information should be
saved or forgotten during training. It can then make predictions by
passing relevant information along long sequences.

(1) LSTM cell

A cell unit in the LSTM model contains three gate structures:
forgetting gate, input gate and output gate, as well as two states:
cell state Ct and hidden layer state ht . The hidden layer state is the
output of the final network, while the cell state will participate in
the calculation of the hidden layer state. The structure of each cell
unit is shown in Fig. 4:

Assuming that the data of previous r days are used to predict the
sales volume of the next day, then, the input vector xt of LSTM at
time t is:
o vector.



Fig. 4. Structure of LSTM (Hochreiter and Schmidhuber, 1997).
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xt ¼
h
dt�r; dt�ðr�1Þ;…; dt�1

i

dt�k ¼
h
salet�k;weathert�k;weekt�k; temperaturet�k; oil pricet�k

i
; k¼1;2;…; r
dt�k is the data of the last k days at time t. salet�k, weathert�k,
weekt�k, temperaturet�k, oil pricet�k represent the sales volume,
weather, week, temperature, oil price of the last k days at time step
t. When the input vector of LSTM at time step t is xt , the output ht of
LSTM's hidden layer state is ht ¼ ½h1;h2;…;hr�, and the cell calcu-
lation process of each time step is as follows:

ft ¼ s
�
Wf $½ht�1; xt �

�
þ bf (6)

lt ¼ sðWl$½ht�1; xt �Þ þ bl (7)

~Ct ¼ tanhðWC$½ht�1; xt � þ bCÞ (8)

Ct ¼ ft$Ct�1 þ lt$~Ct (9)

ot ¼ sðWo$½ht�1; xt �Þ þ bo (10)

ht ¼ ot$tanhðCtÞ (11)

Wf , Wl, WC , Wo are weight matrices that are automatically
learned and updated during training. bf , bl, bC , bo are offsets. At
time step t, the input of the cell unit is the cell state Ct�1 at time step
t� 1, the hidden layer state ht�1 at time step t � 1 and the new
input xt . The output vector ft of Eq. (6) in the forgetting gate and the
output vector lt of Eq. (7) in the input gate are pushed the value to
be between 0 and 1 by Sigmoid function respectively, and the

output vector ~Ct of Eq. (8) in the input gate are pushed the value to
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be �1 and 1 by tanh function. Then the cell state vector ct�1 at time
step t � 1 is calculated with these three vectors to obtain the cell
state vector Ct at time step t. Finally, through Eq. (11), the output
gate vector ot and the cell state vector Ct are combined to obtain the
state output ht of the hidden layer at time step t.
(2) Single-layer LSTM

The single-layer LSTM takes a chain form of repeating neural
network (RNN) modules. The input of single-layer LSTM is step by
step according to time series, and the cell state is updated in each
time step. At time step t, the cell state of unit Ct�1 represents the
input state of cell unit remembering at time step t � 1 and previous
time step, and ht�1 represents the output of cell unit at time step t�
1. Therefore, when multiple cell units are connected together, a
complete single-layer LSTM is formed as shown in Fig. 5. In single-
layer LSTM, the input sequence is x1;x2;…;xt , and each of them is a
vector containing n features (xt ¼ xt1;xt2;…;xtnÞ. At this time step,
LSTM output is ht , and then a new sequence is input for the next
round of prediction.

(3) Multi-layer LSTM

Multi-layer LSTM is slightly different from single-layer LSTM.
The structure of multi-layer LSTM resembles artificial neural
network and has multiple hidden layers, while the single-layer
LSTM has only one hidden layer (see Fig. 6). In the case of large
data volume, it is widely demonstrated that multi-layer LSTM has
higher accuracy than single-layer LSTM. In multi-layer LSTM, the
output of the current time step is the input of the next layer at the
same time step, and the output of the current time step is the
output of the next time step at the same hidden layer.

(4) Bi-directional LSTM



Fig. 5. Single-layer LSTM (Hochreiter and Schmidhuber, 1997).

Fig. 6. Multi-layer LSTM

Fig. 7. BiLSTM.
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Bidirectional LSTM (BiLSTM) network is an extended structure
of ordinary LSTM (Schuster and Paliwal, 1997). BiLSTM's forward
and backward training which are connected to an output layer are
sequential LSTM models (see Fig. 7). In the forward layer, LSTM is
applied to the input sequence. In the backward layer, the backward
form of the input sequence is fed into the LSTM model. Applying
LSTM twice can improve the long-term dependence of learning and
thus improve the accuracy of the model. Meanwhile, Siami-Namini
et al. (2019) compared the performance of ordinary LSTM and
BiLSTM in time series prediction, and the results showed that
BiLSTM-based model provided a better prediction compared with
the conventional LSTM-based model.

3.3. Genetic algorithm

Holland (1975) proposed GA firstly. Inspired by biological evo-
lution, GA has good performance in finding global optimal solutions
and can find global optimal solutions for non-differentiable prob-
lems. This paper uses GA to find the optimal hyperparameters of
the LSTM model. Each characteristic parameter uses the corre-
sponding chromosome encoding mode, and the chromosome
composition of all populations is the same. After that, the next
generation population is generated by crossover, mutation and
selection operations. By the crossover operation, genes from the
same parts of chromosomes pairs are exchanged to explore a larger
solution space and obtain a better solution more easily. Then, the
genetic information is changed by random replacement of genes in
chromosomes through mutation operation to prevent falling into
local optimal solution. In the selection operation, the fitness func-
tion is used to evaluate the adaptability of an individual. The
stronger the adaptability, the greater the probability of the indi-
vidual being selected.

In this paper, GA encoding is binary encoding. Each individual
contains five characteristic parameters: number of neural units, L2
regularization weights, dropout probability, epoch, batch size.
When the population is initialized, the population has n in-
dividuals, and the chromosome composition of each individual Ni
is:

Ni ¼ ½ai;bi; ci; di; ei�; i ¼ 1;2;…;n (12)

ai; bi; ci; di; ei are respectively: number of neural units, L2 regu-
larizes weights, dropout probability, epoch, batch size. Their value
ranges are as follows:

aiε½50;150�;biε½0:0001;0:01�;ciε½0:2;0:8�;diε½300;800�;eiε½16;128�
(13)

The fitness function of the GA considers rootmean squared error
(RMSE) and mean absolute error(MAE) respectively for multi-
objective minimization optimization, that is, the fitness function f
of the GA is:

min f ¼ RMSE þMAE (14)
Table 2
The GA for parameters optimization.

Input: the number of generations G, the population of each generation n, crossover pr
Population initialization: initializes the chromosomes of each individual in the first g
for g ¼ 0;1;…;G� 1:
Evaluation: calculate the fitness function of each individual: ffi;ggi¼1;2;…;n
Crossover: individual fNi;ggi¼1;2;…;n and individual fNj;0gj¼1;2;…;n exchange their chrom
Mutation: some genes of the offspring fNij;gþ1g obtained from the parent generation
Selection: select the individual from fNij;gþ1gij¼1;2;…;n by their fitness function value f
End
Output: the final generation fNi;Ggi¼1;2;…;n and their fitness value ffi;Ggi¼1;2;…;n
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We assume the fitness function value of each individual is fi; i ¼
1;2;…; n, and the probability of the individual being selected is

defined as pi ¼ fiPn

k¼1
fk
. Then, the optimal solution can be found by

continuously performing selection, crossover and mutation oper-
ations in Table 2.
4. Experiments and analysis

4.1. Evaluation indexes and feature extraction

The evaluation indexes selected in this paper are root mean
squared error (RMSE), mean absolute error (MAE) and accuracy
(ACC). RMSE is the square root of the ratio of the square deviation
between the predicted value and the real value. MAE is the average
value of the absolute error between the observed value and the real
value. ACC is the percentage of the absolute value between the
predicted value and the real value. The three standard formulas are
as follows (yp indicates the predicted value, and byp indicates the
actual value):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
q

Xq
p¼1

�
yp � byp

�2vuut (15)

MAE ¼ 1
q

Xq
p¼1

���yp � byp
��� (16)

ACC ¼ 1
q

Xq
p¼1

���yp � byp
���

byp (17)

The following features are added from the raw data to assist
forecast: week, temperature, weather, holidays, and oil prices. For
the above features, the sales volume during the holidays and the
day before the holidays (the average sales volume of the previous
two days during the Spring Festival and National Day) is selected to
calculate the average sales, and the relationship diagramwith sales
volume is shown in Fig. 8aee:

According to Fig. 8aee, the conclusions are as follows:

(1) Take the average of the same oil price to observe the impact
of oil price on sales volume. Although the oil price is affected
by COVID-19, it can still be seen from the chart that the sales
volume tends to decline slightly as the oil price rises. There is
a correlation between gas station sales and oil prices.

(2) Take the average value of the same temperature to observe
the impact of temperature on sales volume. Due to regional
relations, the temperature in Kunming fluctuates within the
range of 1.5 �Ce25 �C, and low or high temperature rarely
occurs. Sales volume has a certain correlation with
temperature.
obability p1, mutation probability p2
eneration fNi;0gi¼1;2;…;n , Ni ¼ ½ai;bi;ci;di;ei�; i ¼ 1;2;…;n

osomes to get fNij;gþ1gij¼1;2;…;n
mutate
fij;ggij¼1;2;…;n to generate fNi;gþ1gi¼1;2;…;n



Fig. 8. The relationship between sales and different factors.
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(3) By adding and averaging all sales volumes from Monday to
Sunday, sales volume shows an upward trend that it reaches
its peak on Friday, then, declines on Saturday and Sunday and
reaches its lowest point on Sunday. Filling station sales have
a strong correlation with the week.
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(4) Take the average value of the same weather condition to
observe the impact of weather on sales. Due to regional re-
lations, the local weather does not include all weather types,
but it can still be seen that heavy rain and other bad weather
have a great impact on sales.



Table 3
Comparison of different combinations of features (test set).

Different combination of features RMSE MAE ACC

Case 1 Historical sales, week, weather, holiday, temperature, oil price 588.4 445.9 88.3%
Case 2 Historical sales, week, weather, holiday, oil price 601.3 458.4 87.8%
Case 3 Historical sales, week, weather, holiday, temperature 595.7 449.4 88.1%
Case 4 Historical sales, week, weather, holiday 597.7 449.8 88.1%
Case 5 Historical sales 672.0 484.2 86.9%
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(5) Take the average value of holidays and the day before holi-
days to observe the impact of holidays on sales volume.
Through the comparison, it is found that the sales volume
before the holidays are higher than the usual sales volume.
During the holidays, except for the Spring Festival, the sales
volume is slightly higher than the usual sales volume. During
the Spring Festival, the sales volume is much lower than the
usual sales volume. There is a strong correlation between the
filling station sales and holidays.

The correlation between sales volume and each auxiliary feature
has been briefly analyzed above according to Fig. 8aee. In order to
further study the influence of features whether have a certain
correlation with sales volume on prediction accuracy or not, fea-
tures with different combinations are selected, and the results
obtained are shown in Table 3. The results of Case 1, Case 2, Case 3,
Case 4 are all superior to Case 5, which is univariate prediction. It is
indicated that the addition of objective factor features for predic-
tion can significantly improve the prediction accuracy of the model.
At the same time, by comparing Case 1, Case 2, Case 3, Case 4, it can
be seen that RMSE, MAE and ACC of Case1 are all optimal. It is
indicated that adding temperature and oil price for prediction can
still improve the model accuracy slightly.
4.2. Feature dimension reduction

Since the weather and week variables are text-type, it is
necessary to convert text variables into word vectors. The text
encoding adopts one-hot encoding. However, one-hot encoding
leads to excessive feature dimensions and overfitting of the model.
Therefore, this paper adopts Embedding layer to reduce feature
dimensions of high-dimensional text to increase the accuracy of the
model. The following two cases are compared: one-hot encoding
only and one-hot encoding followed by Embedding for dimension
reduction. Unidirectional LSTM and bidirectional LSTM models are
respectively used for comparison, and the results obtained are
shown in Table 4 and Table 5. It can be seen that the accuracy of the
model with one-hot encoding and dimension reduction is obvi-
ously better than that with one-hot encoding only. At the same
time, in the case of the one-hot coding model, the results show that
the evaluation indexes' difference between the training set and the
test set is too large, and the model overfits due to high feature di-
mensions. Therefore, Embedding method can effectively avoid
model overfitting and improve the model's accuracy and general-
ization ability.
Table 4
Comparison of Feature dimension reduction in unidirectional LSTM.

RMSE

Train set Test set

One-hot and embedding 576.8 587.6
One-hot 333.6 628.1

2492
4.3. LSTM structure

Different LSTM structures have different precision for different
problems. In order to find the optimal model structure, this paper
compares four different LSTM structures: single-layer LSTM, multi-
layer LSTM, single-layer bidirectional LSTM (BiLSTM) and multi-
layer bidirectional LSTM (BiLSTM). According to the empirical
method and the scale of the problem in this paper, it can be roughly
determined that the Cell units are between 60 and 100 and the
number of LSTM layers does not exceed two layers. To avoid sta-
tistical uncertainty, we run each example 20 times for each case.
LSTM parameters of dropout probability, loss, epochs, batch size,
time step are 0.5, ‘MSE’, 500, 64, 7 respectively. The comparison
results are shown in Table 6. It can be seen from Table 6 that the
accuracy of single-layer LSTM model is better than that of multi-
layer LSTM, and the precision of single-layer bidirectional LSTM
model is better than that of single-layer unidirectional LSTM. In
addition, according to the standard deviation of Table 6, it shows
that the stability of single-layer bidirectional LSTM is slightly better
than that of single-layer unidirectional LSTM in most cases. The
reason is that bidirectional LSTM will be trained separately from
forward and backward. If the weather is bad tomorrow or there are
holiday travel plans tomorrow, the backward training in bidirec-
tional LSTM can effectively capture this information to update the
prediction strategy. The single-layer bidirectional LSTM model is
finally selected for the following reasons: (1) due to the small scale
of the problem, the single-layer LSTM model has higher accuracy;
(2) The single-layer LSTM model has a shorter training time; (3) In
the time series prediction problem, the bidirectional LSTM model
usually has higher accuracy, mainly because the bidirectional LSTM
model can consider the influence of future factors that unidirec-
tional LSTM cannot during the backward training process.
4.4. GA-BiLSTM

The hyperparameters are parameters which are set before the
start of the learning process rather than obtained through training.
In general, different hyperparameter settings will lead to different
results, so it is necessary to optimize the hyperparameters and
select a group of optimal hyperparameters for the model to
improve the performance. The hyperparameters involved in the
BiLSTMmodel include the number of neural units, L2 regularization
weights, dropout probability, epoch and batch size.With the sum of
RMSE and MAE of the model used as fitness function for multi-
objective optimization, the optimal hyperparameters are sought
by GA. Simultaneously, crossover probability, generation and
MAE ACC

Train set Test set Train set Test set

399.1 446.6 90.0% 88.3%
210.7 483.4 94.3% 85.5%



Table 5
Comparison of Feature dimension reduction in bidirectional LSTM (BiLSTM).

RMSE MAE ACC

Train set Test set Train set Test set Train set Test set

One-hot and embedding 580.1 576.6 402.0 441.1 90.1% 88.4%
One-hot 321.7 672.8 197.3 519.2 95.2% 85.7%

Table 6
Different structures of LSTM.

Cell units (1st
layer)

Cell units (2nd
layer)

RMSE's
mean

RMSE's standard
deviation

MAE's
mean

MAE's standard
deviation

ACC's
mean

ACC's standard
deviation

Single-layer LSTM 60 \ 588.60 8.28 446.70 7.76 88.54% 0.11
Single-layer LSTM 80 \ 590.92 11.52 449.74 9.52 88.40% 0.11
Single-layer LSTM 100 \ 591.28 10.85 450.85 11.36 88.51% 0.11
Single-layer

BiLSTM
60 \ 587.50 10.33 444.15 8.91 88.53% 0.11

Single-layer
BiLSTM

80 \ 585.58 9.23 446.78 8.86 88.52% 0.08

Single-layer
BiLSTM

100 \ 585.37 10.83 450.07 10.67 88.54% 0.09

Multi-layer LSTM 60 30 598.45 13.03 457.85 11.78 88.40% 0.17
Multi-layer LSTM 80 40 600.00 15.93 454.91 14.65 88.35% 0.29
Multi-layer LSTM 100 50 600.77 12.03 456.12 10.09 88.38% 0.14
Multi-layer

BiLSTM
60 30 597.54 12.01 454.10 11.06 88.41% 0.12

Multi-layer
BiLSTM

80 40 594.22 12.58 453.98 11.12 88.35% 0.14

Multi-layer
BiLSTM

100 50 604.32 12.58 458.73 11.12 88.40% 0.15

Table 7
Different GA parameter combination.

Crossover probability Generation Population size MAE þ RMSE MAE RMSE

Case 1 0.3 15 15 1005.6 435.1 570.5
Case 2 0.3 30 20 1001.7 433.1 568.6
Case 3 0.3 20 30 1010.6 437.1 573.5
Case 4 0.3 20 20 1006.8 436.5 570.3
Case 5 0.7 15 15 1011.2 437.2 574.0
Case 6 0.7 30 20 1007.7 436.5 571.2
Case 7 0.7 20 30 1006.0 436.7 569.3
Case 8 0.7 15 15 1007.1 436.6 570.5
Basic LSTM \ \ \ 1034.2 446.6 587.6

Fig. 9. MAE þ RMSE of GA-BiLSTM.

S.-Y. Pan, Q. Liao and Y.-T. Liang Petroleum Science 19 (2022) 2483e2496
population size of the GA have a certain influence on the results. For
example, selecting the appropriate crossover probability can
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determine whether the global optimal solution can be obtained.
Table 7 shows the results obtained by using GA with different



Table 8
Comparison of different models.

RMSE MAE ACC

Train set Test set Train set Test set Train set Test set

BP neural network 639.7 628.8 479.9 491.9 87.7% 87.0%
XGBOOST 635.5 645.1 469.2 460.0 88.2% 87.2%
Exponential smoothing \ 764.3 \ 551.2 \ 85.1%
ARIMA \ 737.9 \ 577.2 \ 86.1%
Basic BiLSTM 576.8 587.7 399.1 446.6 90.0% 88.3%
GA-BiLSTM 571.2 569.3 422.1 436.7 90.6% 88.7%

Fig. 10. The predicted results of different prediction models.
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crossover probability, population number and individual number.
Fig. 9 shows the convergence of fitness function with different GA
2494
parameter combinations. As can be seen from Table 7, compared
with Basic LSTM based on manual experience, GA-BiLSTM



S.-Y. Pan, Q. Liao and Y.-T. Liang Petroleum Science 19 (2022) 2483e2496
effectively reduces the model error by 3%, and the result obtained
when the crossover probability is 0.3 is better than that when the
crossover probability is 0.7. Fig. 9 shows the convergence of eight
different GA parameter combinations, and it can be seen from the
figure that they all converge. Finally, according to the comparison,
the number of neural units, L2 regularization weights, dropout
probability, epoch, and batch size of optimal BiLSTM hyper-
parameters obtained are 83, 0.000685, 0.543, 456, 54.

4.5. Results and comparison

The structure of LSTMmodel and optimal parameters of BiLSTM
have been determined in Scetion4.3 and Scetion4.4. To illustrate
our superiority, the proposed GA-BiLSTMmethod is comparedwith
basic BiLSTM, XGBOOST (Chen and Guestrin, 2016), ARIMA, BP
neural network and exponential smoothing model which is
currently used in business. Each model uses the last 30% of the data
as a test set to test the accuracy of the predictionmodel. Since other
algorithms have fewer hyperparameters, we use grid search to find
their optimal parameters, and the results are as follows: (1) The
weight coefficient a of the first-order exponential smoothing
method is 0.35. (2) The number of neurons in the first layer of the
BP neural network is 20, and the number of neurons in the second
layer is 1. (3) The maximum number of iterations of XGBOOST is 22,
the maximum depth is 3, and the learning rate is 0.1. The obtained
prediction results are shown in Table 8. It shows that the results of
the BiLSTM model are better than other models. In order to make
the prediction results more intuitive, Fig. 10aec shows the predic-
tion results of different models. Fig. 10a is the comparison among
the training set, test set of GA-BiLSTMmodel and real value. Fig. 10b
is the comparison between the results of all test sets of the above
methods and the real value. Fig. 10c is the comparison among the
GA-BiLSTM model, ARIMA and the exponential smoothing model
used in business. As shown in Fig. 10c, in places with large fluctu-
ations, for example, the sales volume fluctuates greatly around the
Spring Festival days. Compared with ARIMA and the exponential
smoothing model, GA-BiLSTM has the best performance and the
part outlined by the dotted line in Fig.10c can show that GA-BiLSTM
model can reduce the effect of lag caused by excessive fluctuation.
In other words, when the sales are with large fluctuations, GA-
BiLSTM model's prediction can react more quickly. Meanwhile,
Fig. 10c compares the results among the exponential smoothing
model, ARIMA and GA-BiLSTM model. It is not difficult to find that
the exponential smoothing model and ARIMA have a very obvious
“lag” in places with large fluctuations, so manual adjustment is
often required based on historical experience. Compared with the
exponential smoothing model and ARIMA, GA-BiLSTM has obvious
advantages.

5. Conclusion

Sales volume prediction of filling stations has received little
attention in previous literature, but it is an important link. Mean-
while, it is also a difficult task due to large fluctuations, weak
periodicity and being influenced by various objective factors. This
paper proposes a combination model based on GA and BiLSTM. We
add objective factors which influence the sales of filling stations to
assist the prediction. One-hot encoding is used to encode the text
variables and the high-dimensional text vectors are reduced by
Embedding layer. Then, GA is used to adjust BiLSTM hyper-
parameters automatically. 940 days of sales data of a filling station
in Kunming, China from 2019 to 2021 are taken as an example to
discuss the effects of different feature combinations on prediction
results. Comparisons have been made among the different ways of
feature dimension reduction, different LSTM structures as well as
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different GA parameters. The results show that: (1) feature
dimension reduction using Embedding layer can effectively avoid
model overfitting; (2) The accuracy of BiLSTMmodel is optimal; (3)
BiLSTM hyperparameter optimization using GA can reduce the
RMSE and MAE of the model by 3%. Finally, compared with other
algorithms, the proposed model's test set accuracy can reach 89%,
and its MAE and RMSE are better than other algorithms.

The proposed model does not take into account the impact of
time steps on forecasting. To address this issue, attention mecha-
nism can be added to the BiLSTM model, which can effectively
improve the accuracy of multivariable prediction by screening out
the information that is more important to the current task from a
large amount of information.
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