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The production and separation of optimal molecules in diesel fuels require a systematic property eval-
uation for the containing molecules. This paper evaluates the diesel molecules based on four key quality
indicators: low-temperature fluidity, cleanliness, ignition, and power performance. We established the
corresponding quantitative structure-property relationship models for corresponding properties, which
are freezing point, yield sooting index, cetane number, and combustion heat. The models were applied

for the screening of the high-performance molecules that is suitable for diesel. The molecular perfor-
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mance distribution of the conventional diesel and biodiesel were also compared. Moreover, we analyzed

Diesel the effect of different transformation paths on molecular properties, giving guidance on the conversion

Optimal molecules process design.

QSPR © 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This

Molecular screening

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Diesel is still one of the primary motor fuels all over the world.
The vehicle's emission has been considered to contribute signifi-
cantly to the air pollution. A lot of attentions have been paid to the
environmental protection, leading to a stricter emission regulation
on diesel fuel. There is a growing demand for refineries to produce
high-performance and clean diesel to meet the quality standards
(Liu H et al., 2008). While the traditional diesel processing tech-
nology mainly focused on the bulk properties of feedstocks and
products, the emerging diesel processing technology requires
molecular-level information to achieve better product quality with
high selectivity.

In recent years, petroleum molecular engineering technology
has attracted widespread attentions. One of the critical problems is
to find the proper separation and transformation routines to
convert feedstock molecules into high value-added product mole-
cules (Zhu, 2018; Hu et al., 2002; Hu and Zhu, 2004). The deter-
mination of high value-added molecules is critically important for
the process design, which requires a systematic evaluation of the
molecular property. Our previous work has built a comprehensive
evaluation model for gasoline molecules, predicting five quality
indicators: anti-knock, evaporation, power, stability, and
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cleanliness performance (Cai et al., 2021). A systematic evaluation
for diesel molecules has not yet been reported.

The property prediction for the pure component can be mainly
classified into three categories based on the input features: group
contribution, chemical descriptor, and deep learning methods.
Many group contribution models have been developed for decades
to calculate commonly used properties, such as boiling point,
critical properties, freezing point (FP), and flash point (Joback and
Reid, 1987; Constantinou and Gani, 1994; Marrero and Gani,
2001; Hukkerikar et al., 2012; Tsibanogiannis et al., 1995; White,
1986; Cordes and Rarey, 2002; Benson et al., 1969; Marrero and
Gani 2001, 2001; Albahri and Tareq, 2003; Wen and Qiang, 2001;
Li et al,, 1994; Wang et al., 2020). Kubic et al. used group contri-
bution and machine-learning algorithms to predict the cetane
number (CN) of hydrocarbons and oxygenated compounds,
showing good applicability on biofuels (Kubic et al., 2017). Saldana
et al. developed a variety of machine-learning based QSPR models
to estimate properties such as cetane number and flash point
(Saldana et al. 2011, 2012). The advantage of the group contribution
method is that the calculation procedure is simple and straight-
forward, but the determination of proper functional groups and the
mathematic expression is time-consuming. Comparing to group
contribution methods, chemical descriptors provide molecular
features with a higher diversity. Karthikeyan et al. used chemical
descriptors and artificial neural network (ANN) to predict the
freezing point (Karthikeyan et al., 2005). Pan et al. used support
vector machine (SVM) based QSPR models to predict properties
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Fig. 1. a—c Main diesel quality indicators and the corresponding molecular properties; Database of key properties for hydrocarbon molecules and all molecules.

such as flash point and combustion heat (AHc®) (Pan et al. 2008,
2011).

Recently, the deep learning method has been widely applied to
property estimation since it has higher performance on the feature
engineering and the regression process (Su et al., 2019; Goh et al,,
2017; Han et al.,, 2017; Lashkenari et al., 2013; Dong et al., 2010).
Schweidtmann et al. used the graph neural network to estimate the
octane number and cetane number of pure compounds, in which
the chemical bonds between atoms and atoms constitute the edges
and nodes of the graph (Schweidtmann et al., 2020). Due to the lack
of sufficient experimental data of octane number and cetane
number, they combined multi-task learning, transfer learning, and
integrated learning to overcome the small sample problem. Coley
et al. applied deep learning to predict the products of a reaction
(Coley et al., 2019). The model incorporated the possible sites of
reactivity and evaluated their relative likelihoods. The accuracy of
the main product predicted was higher than 85%. Su et al. combined
tree-structured long short-term memory network and back-
propagation neural network to predict critical properties (Goh
et al, 2017). Different from traditional property prediction
methods, deep learning method achieves a higher degree of auto-
mation during feature engineering and model training. However, a
large amount of data was required to perform an effective network
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structure parameters training.

So far, many property prediction methods for diesel molecules
have been reported in the literature. However, a systematic per-
formance evaluation model of diesel molecules is still necessary for
its usage. In this paper, a systematic evaluation model was devel-
oped, which was composed of QSPR models for freezing point, YSI,
cetane number, and combustion heat. The high value-added mol-
ecules of diesel can be distinguished by the model. Then, we dis-
cussed the distribution characteristics of the molecular
performance of conventional diesel and biodiesel. The effects of
different reaction pathways on the molecular property were also
analyzed.

2. Materials
2.1. Data preparation

To establish a systematic evaluation model, firstly we must
determine the key quality indicators for diesel usage. The diesel
quality standard specifies solidifying point, cloud point, and cetane
number as main quality indicators. The solidifying point and cloud
point represent low-temperature fluidity. To avoid diesel solidifi-
cation at low temperature, a lower solidifying point and cloud point
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is preferred. The cetane number represents ignition performance. A
higher cetane number donate to a smooth engine work. In the
common diesel standards, the cetane number is required to be
maintained in an appropriate range. Hydrocarbon provides suffi-
cient power for the engine through combustion. The combustion
heat is an indicator of diesel mileage. Vehicle emission is an
important source of environmental pollution. The pollutants
emitted should be reduced to a lower threshold. In summary, high-
quality diesel should have good low-temperature fluidity, ignition
stability, combustion heat, and cleanliness performance.
According to diesel quality standards and related literature, the
low-temperature fluidity of diesel is generally represented by cloud
point, pour point, and solidifying point. Nevertheless, there is no
available data related to the low-temperature fluidity of diesel
molecules in the literature. The freezing point is an indicator of the
low-temperature fluidity of aviation fuels. Freezing points of hy-
drocarbons and oxygenates have been extensively reported.
Therefore, we used the freezing point to represent the low-
temperature fluidity of diesel. YSI represents the emissions
emitted from diesel vehicles (Das et al. 2015, 2017, 2018; St John
et al., 2017). Combustion heat represents the power performance.
Cetane number represents the ignition performance. Fig. 1 (a)
shows a schematic diagram of the four main indicators and the
corresponding molecular properties. After determining the key
properties, the corresponding dataset should be collected. This
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work collected two sets of databases. For conventional diesel, the
hydrocarbon database composed of only C and H elements was
built with a total of 1105 data points. For biodiesel, the universal
database including C, H, S, O, and N elements was established with
3311 data points (Kubic et al., 2017; Pan et al., 2011; Das et al., 2018;
Gharagheizi et al, 2014; American Petroleum Institute, 1981).
Fig. 1(b and c) displays the specific distribution of the main
properties.

2.2. Molecular feature

In this paper, diesel molecules are expressed by a chemical
language of simplified molecular input line entry specification
(SMILES), which can encode chemical structure as simple text
strings. Based on SMILES language, we calculated structural groups
and chemical descriptors of diesel molecules. Structural groups
were manually determined and automatically calculated for the
diesel molecules, which can directly reflect the structural variation
of molecules. Chemical descriptors contain molecular composition,
topology, geometry, and quantum chemistry information, which
have more rich structural information and can be automatically
generated.

3. QSPR model development

The construction of the evaluation model was divided into three
steps. Fig. 2 shows a flow chart of property prediction modeling.
The first step was to build a feature evaluation model. The features
that contribute significantly to the properties were selected, so the
corresponding feature database was implemented. The second step
was to integrate the selected features with machine learning al-
gorithms to screen out the best combination of key properties. The
third was to validate the extrapolation ability of QSPR models. It can
prevent the model from over-fitting and ensure that the model has
strong practicality.

3.1. Feature evaluation model construction

A good QSPR model can accurately predict the target properties
with the fewest features. In this paper, two feature engineering
methods were used for structural groups and chemical descriptors,
namely the neural network feature screening method and principal
component analysis. Fig. 3 is a schematic diagram of two feature
engineering methods. Conventional diesel is mainly composed of
hydrocarbon compounds and a small number of heteroatomic
compounds (oxygen, nitrogen, sulfur). Since the combinatorial
complexity of the structural group is small, limited groups can be
used to precisely describe the structural variation of diesel mole-
cules. To select structural groups that mainly contribute to their
properties, a feature evaluation model should be established. The
first stage was to input the basic groups into the neural network,
where the training set accounts for 100% of the dataset. Meanwhile,
the network parameters are constantly adjusted to train the
network. The second was to add the united groups manually. The
role of the united groups was to identify and distinguish the iso-
mers in the database. In this way united groups were continuously
added to the feature evaluation model until an acceptable error was
obtained; Finally, the basic groups and united groups constituted
the feature database.

Moreover, biodiesel consists of more oxygen elements besides
hydrocarbons. The limited structural groups cannot fully describe
the diverse structures of biodiesel. Therefore, we used chemical
descriptors as features that include abundant chemical informa-
tion. Due to a large number of descriptors, the principal component
analysis was applied to screen effective descriptors and the
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Fig. 3. Schematic diagram of feature engineering modeling: neural network feature screening method and principal component analysis.

database of chemical descriptors was determined. Conventional
diesel could employ the neural network feature screening method
and principal component analysis, while biodiesel only used prin-
cipal component analysis.

3.2. Combination of QSPR models

Two types of features including structural groups and chemical
descriptors were used in this work. The regression methods were
prevalent machine learning approaches currently, containing sup-
port vector machine, random forest, and artificial neural network.
The algorithms had a better capacity to regress nonlinearity and
were very adapted to the complex and diverse molecular structures
and properties of diesel. For the sake of gaining the optimal QSPR
model for the key properties, we combined features and mathe-
matical models arbitrarily to screen out the best combination for
each property. For conventional diesel, YSI, cetane number, and
combustion heat employed the combination of structural groups
and ANN, and freezing point used chemical descriptors and RF
through repeated trials and parameters adjustment. For biodiesel, it
was found that the combination of chemical descriptors and ANN
had higher performance for each property.

It is necessary to balance the fitness and model extrapolation
while training QSPR models. Fig. 4 (a) takes the cetane number as a
case study to compare the prediction results of ANN, SVM, and RF. It
can be seen that the correlation coefficient of RF in the training
process is 0.9825, which indicates the best performance for the
training set. The SVM performs the best in the test set. However,
The QSPR models were validated in two aspects, namely test set
and extrapolation performance test. The extrapolation performance
of a model is especially important. The extrapolation performance
of the cetane number in Fig. 4 (b) corresponds to the methods in
Fig. 4 (a). In Fig. 4 (b), the extrapolation curve of RF is not smooth
enough, indicating the overfitting of model. Secondly, the extrap-
olation effect of RF on hydrocarbons with multiple rings and
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oxygenated compounds is not good. Moreover, the extrapolation
curve of SVM on hydrocarbons with multiple rings in the graph
tends to be flat. The cetane number does not vary with increasing
carbon number, which is not under common knowledge. The ANN
has good extrapolation performance on various hydrocarbon ho-
mologous series. The error between ANN and SVM in the training
set and test set is very small. Therefore, the ANN model was
selected for cetane number prediction finally.

3.3. QSPR model validation

Taking the freezing point as an example, we investigated the
construction and verification process of the QSPR model. The low-
temperature fluidity of diesel is not only related to whether diesel
engines can supply fuel normally, but also has a close relationship
with storage and transportation of diesel at low temperatures. The
freezing points of straight-chain paraffins, branched paraffins and
naphthenes are quite different, indicating that the freezing point is
very sensitive to the structure. Hence, the prediction of the freezing
point for diesel molecules is a challenge. In this paper, the freezing
point prediction model applied the group of chemical descriptors
and RF. Fig. 5 (a) shows the parity plot of the experimental and
estimated values. The correlation coefficients were 0.9766 and
0.9736, respectively. The predicted value was in good agreement
with the experimental value.

After training the model, it was indispensable to test the ho-
mologous extrapolation ability of the model. Fig. 5 (b) shows the
homologous series extrapolation test of different types of hydro-
carbons. The predicted values were consistent with the experi-
mental data. A growing trend of freezing point with carbon number
can be observed from the figure for the same homologous series.
The only exception was that the freezing points of some naph-
thenes without branched chains were usually higher. The variation
tendency is in line with experimental data. Moreover, there is no
experimental data on the freezing point of hydrocarbons with
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Fig. 4. Comparison of results of the neural network, support vector machine, and random forest for cetane number prediction.

multiple rings in the database. But the QSPR model we established
can still precisely predict its variation trend, demonstrating that the
model has a strong extrapolation ability. From Fig. 5(b), it can also
be found that in addition to hydrocarbons with multiple rings,
branched chains, double bonds, and rings are all structural features
that have a positive contribution to the freezing point. This revealed
that the conversion of normal paraffins into these structures is
helpful to reduce the freezing point and increase the low-
temperature fluidity. The model construction of other properties
was similar to the freezing point. The prediction results of YSI and
combustion heat can be checked in our previous work for gasoline
molecules (Hu and Zhu, 2004). For the results of other properties,
please see Fig. S1-S8 in the supporting information.

In summary, we established two groups of evaluation models,
which are applied to two scenarios of conventional diesel and
biodiesel. Each model has undergone repeated training and strict
extrapolation, thereby obtaining optimum models with high ac-
curacy and strong generalization. Then, we applied QSPR models to
the molecular screening and conversion process. Therefore, we will
elaborate on the application of evaluation models in the selection of
optimal molecules and the optimal path.
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4. Model application
4.1. Performance evaluation of pure component

The QSPR models of the key properties were combined to form a
comprehensive evaluation system. We took a radar chart to show
the pros and cons of diesel molecules intuitively. Several repre-
sentative compounds were selected, including paraffins, iso-
paraffins, olefins, naphthenes, aromatics, and oxygenated com-
pounds. In Fig. 6, the coordinates are cetane number, combustion
heat, YSI, and freezing point. The molecules with a higher cetane
number and combustion heat represent better molecules. Similarly,
the molecules with lower YSI and freezing points are better.
Correspondingly, the shaded area denotes high-performance mol-
ecules in the radar chart. From the figure, we can readily find high
value-added molecules, such as hexyl-cyclohexane and 2,6,10-
trimethylundecane, which have good low-temperature fluidity,
emission, and combustion performance. In consequence, iso-
paraffins and naphthenes are ideal blending components of high-
quality clean diesel. Refineries should purposefully convert feed-
stocks into these two types of molecules to improve diesel quality
in practical production.
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4.2. Molecular performance distribution characteristic

The performance distribution of molecules in diesel mixture is
useful for the separation and conversion process design. Therefore,
we investigate the molecular performance distributions for typical

diesels. Fig. 7 shows the molecular performance distribution maps
of hydrotreating diesel, catalytic cracking diesel, biodiesel pro-
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duced from waste tires and palm oil (Aquing et al., 2012; Ayanoglu
and Yumrutas, 2016; Mota et al., 2014). The distribution map was
partitioned into four parts, in which the part of low YSI and low
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freezing point are better blending components. It can be observed accounts for the majority. When used as a blending component, it
that there are more compounds with low freezing point and YSI in will improve the low-temperature fluidity and reduce emissions of
the hydrotreating diesel, where the content of naphthenes blended diesel. The catalytic cracking diesel contains more
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components with high YSI and freezing point, which will emit more
pollutants and have poor low-temperature fluidity. Biodiesel, as a
substitute fuel for traditional petrochemical diesel, is relatively
clean and renewable energy. It has the advantages of wide sources,
low cost, and environmental protection. Biodiesel from catalytic
pyrolysis of waste tires has higher content of low molecular weight
aromatics, which can be used as raw materials for chemicals pro-
duction. Biodiesel produced by thermal catalytic cracking of palm
oil contains more olefins and oxygenated compounds. The com-
ponents are mainly concentrated in the low YSI area, indicating that
it is a low-emission clean fuel. With the increasing importance of
environmental protection today, we need to develop more related
processes of biodiesel production to reduce environmental pollu-
tion. In summary, both hydrotreating diesel and biodiesel produced
by catalytic cracking of palm oil can be used as better components
for diesel blending. Their common characteristics are low YSI and
low freezing point, which can improve the quality of blended
diesel.

4.3. Effect of conversion pathways on molecular properties

The optimal transformation pathways were investigated in the
hydrotreating process. We took the hydrotreating reaction as an
example to illustrate the process. Fig. 8 exhibit the distribution
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characteristics of raw materials and products through hydro-
treating. The raw material involves more alkanes and fewer aro-
matics. The product contains more naphthenes through the
hydrotreating reaction. The paraffins and iso-paraffins were greatly
reduced, thereby lowering the freezing point of hydrotreated
diesel.

The naphthalene compound was taken to illustrate the selection
of optimal paths in the hydrotreating reaction. The hydrotreating
reaction network was constructed at the molecular level. The aro-
matic ring saturation, isomerization, ring-opening, ring deal-
kylation mainly occurred in the hydrotreating reaction. In Fig. 8 (c),
we have drawn the hydrotreating pathways diagram of naphtha-
lene. The molecules moving left signify a reducing freezing point
and moving down denotes a decreasing YSI. It can be found that all
pathways in the hydrotreating reaction of naphthalene are all
moving down or left, which indicates that hydrotreating is an
efficient process for producing high-quality clean diesel. Fig. 8 (d)
shows the specific numerical variation of the key properties of
diesel before and after hydrotreating. When the aromatic ring is
saturated, the cetane number increases, the freezing point, YSI, and
combustion heat all decrease. The comprehensive performance of
the product has been significantly improved compared with the
reactant, especially the YSI value. The ring-opening reaction is
similar to aromatic ring saturation. The key properties of the
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product are all improved.

Hence, the reaction paths of all colors are ideal routes of moving
down or left through detailed analysis. This demonstrates that
hydrotreating is an effective means to improve the quality of diesel.
It can improve the ignition performance and low-temperature
fluidity while decreasing the emissions of motor vehicles. The re-
action pathways on the map can help us understand the effect of
various conversion paths on the properties deeply and direct re-
fineries to select and control the optimal route.

5. Conclusion

In this work, two groups of systematic evaluation models have
been constructed for the main quality indicators of diesel, including
low-temperature fluidity, cleanliness, power, and ignition perfor-
mance. One was the hydrocarbon database composed of only C and
H elements for conventional diesel. The QSPR models were built by
structural group + ANN and chemical descriptor + RF. Its accuracy
was high, but the application range was small. The other was the
universal database containing C, H, S, O, and N elements for bio-
diesel. The models were established by chemical
Descriptor + principal component analysis + ANN, which have a
broader application and good generalization. Then, we used the
evaluation model to guide the optimal structure selection and the
identification of the optimal pathways. First, we adopted the radar
chart to visually display the pros and cons of representative mol-
ecules. Second, the distribution characteristics of various diesels
were compared, including conventional diesel and biodiesel. Also,
we investigated the ideal component for diesel blending. Finally, a
detailed analysis of the hydrotreating reaction process of naph-
thalene was carried out. The reaction routes that improve the
quality of diesel can be clearly observed. The systematic evaluation
model we developed has important guiding significance for high-
quality diesel production.
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