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a b s t r a c t

An aim of current study is to analyze the contribution of reflected longitudinal waves to wave-induced
fluid flow (WIFF) in the cracked porous solid. Initially, we investigate the time harmonic plane waves in
cracked porous solid by employing the mathematical model proposed by Zhang et al. (2019). The solution
is obtained in form of the Christoffel equations. The solution of the Christoffel equations indicates that
there exist four (three dilatational and one shear) waves. These waves are attenuated in nature due to
their complex and frequency-dependent velocities. The reflection coefficients are calculated at the sealed
pore stress-free surface of cracked porous solid for the incidence of P1 and SV waves. It is found that three
longitudinal waves contribute to WIFF and the contribution of these waves to the induced fluid in the
cracked porous solid is analyzed using the reflection coefficients of these longitudinal waves. We
analytically show that the fluid flow induced by these longitudinal waves is linked directly to their
respective reflection coefficients. Finally, a specific numerical example is considered to discuss and to
depict the impact of various parameters on the characteristics of propagation like phase velocity/
attenuation, reflection coefficients and WIFF of longitudinal waves.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Most of the geological materials like reservoir rocks are gener-
ally heterogeneous and fractured or cracked. The pores and
cracked/fractured space of these types of materials are mainly filled
with water, gas or oil. When an elastic wave propagates through
such materials, the pore pressure is developed on the mesoscopic-
scale (huge than pore size but quite little than seismic wavelength)
and it induces the fluid flow betweenmore compliant parts (cracks/
fractures) and stiffer portion (background pores) of the material.
Such a flow mechanism is recognized as WIFF. The wave induced
fluid flow is the leading contributor of wave attenuation and
dispersion, which is hugely influenced by the pore structure, fluid
properties and lithology (Yao et al., 1985; Müller et al., 2010;
Quintal et al., 2011; Khalid and Ahmed, 2016). Therefore, the
presence of pores and cracks in the rocks beneath the earth's crust
significantly influences the propagation of elastic waves. Though,
).
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cracks have extremely smaller aspect ratio as compared to pores
like crack thickness is much smaller than its lateral size, yet distinct
sizes, shapes, locations and orientations of the cracks are generally
possible in different rocks. Earlier, several endeavors have been
made to assimilate the cracks into the rock models and to explore
their effects on the propagation characteristics of elastic waves.
Eshelby (1957) and Walsh (1965) started these endeavors to
explore the impact of cracks on the elastics properties of rocks
containing cracks. Afterward, Nur (1972) and Aggarwal et al. (1973)
elucidated the travel time deviations in terms of the alterations in
dilatancy around the focal zone and the flow of pore fluid into the
dilatancy-formed cracks. Garvin and Knopoff (1973, 1975a, b)
approximated the wave velocities for elastic solids containing a
dilute concentration of small cracks. O'Connell and Budiansky
(1974) and Budiansky and O'Connell (1976) investigated the influ-
ence of cracks on the elastic properties of an isotropic elastic solid.
Later, O'Connell and Budiansky (1977) analyzed the viscoelastic
properties of cracked viscoelastic solids for full and partial satura-
tion of cracks. Shapiro (2003) deduced the analytical relations for
the elastic moduli of a cracked porous medium as a function of stiff
porosity, compliant porosity and pressure though he did not
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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consider the shapes of cracks. David and Zimmerman (2011)
introduced the elastic moduli of an isotropic solid for randomly
distributed and randomly orientated spheroidal pores. In other
studies (Cheng and Toks€oz, 1979; Tran et al., 2008; David and
Zimmerman, 2012), the fluid exchange between the cracks and
porous environment is not contemplated. In these studies, they
have estimated the pore aspect-ratio distribution from the pressure
dependence of dry velocities. These models can only furnish the
crack characteristics, but these do not narrate the attenuation and
velocity dispersion mechanism. Most of these endeavors were
based on the introduction of fluid-saturated cracks in elastic
materials.

In most of the classical approaches, the well known Biot's
poroelastic theory (1956a, b, 1962a, b) is employed to study the
elastic wave exploration of earth's shallow crust. Biot's poroelastic
theory considers the global-flow mechanism in saturated porous
media and is equivalent to Gassmann (1951) in the low-frequency
limit. However, it is not suitable to model the fluid flow between
pores and cracks. Hence, several models by various researchers
(Mavko and Nur, 1975; Murphy et al., 1986; Gurevich et al., 2009)
have been proposed in the past few decades to address this local
mechanism. Interestingly, both flow mechanisms coexist in a
cracked porous medium. Mavko and Nur (1975) introduced the
squirt flow mechanism for the fluid flow at pore scale level to
explain the velocity dispersion/attenuation in the ultrasonic fre-
quency band. Budiansky and O'Connell (1980) analyzed the local
flow effects for penny-shaped cracks and spherical pores. Mavko
and Nur (1979) and Dvorkin and Nur (1993) introduced the
“squirt flow” theories to explain the local fluid flow. The later
theory is often referred as the BISQ theory. But, twomost important
crack characteristics (crack density and aspect ratio) are not
assimilated in BISQ theory. Tang (2011) and Tang et al. (2012)
addressed these shortcomings in their model which is known as
Tang model. They perceived that the relaxation frequency and
amount of wave dispersion/attenuation are guarded by crack
density and aspect ratio. Jakobsen et al. (2003) analyzed the effects
of pores and cracks on the elastic behavior by considering an
arbitrary distribution of pores and fractures based on the T-matrix
approach. Pride et al. (2004) elucidated that the cracks can be
treated as penny-shaped inclusions. Galvin and Gurevich (2009)
analyzed the elastic wave dispersion and attenuation in a porous
medium containing aligned sparsely distributed penny-shaped
cracks. Yao et al. (2015) modeled the wave dispersion and attenu-
ation by using the dynamic fluid modulus. They modified the
original fluid modulus by introducing a flow term induced by the
squirt flow into the original fluid modulus. Furthermore, Guo et al.
(2017) investigated the relations between the elastic properties of
rocks and intersecting fractures. Ba et al. (2015) developed a double
double-porosity model to analyze the elastic wave propagation in
porous media including both patchy saturation and fabric hetero-
geneity at different scales. They studied effects of pore fluid and
solid frame heterogeneities on the dispersion/attenuation charac-
teristics of elastic wave. Later, Ba et al. (2017) developed a double
double-porosity model for rock anelasticity due to patchy satura-
tion and fabric heterogeneity. They have studied the effects of fabric
and saturation inhomogeneities on wave attenuation and velocity
dispersion. Zhang et al. (2020) proposed the differential poroelas-
ticity model to describe the wave propagation and dissipation in
fluid-saturated rocks, which consists of infinite components.

WIFF is the main cause of attenuation and velocity dispersion in
the fluid-saturated porous media, so keeping in view the impor-
tance of WIFF, recently Kumar and his co-workers (Kumar et al.
2018, 2019, 2019; Barak et al., 2018; Kumari et al., 2019) studied
the impact of WIFF on the seismic waves propagation. Recently,
Kumari and Kumar (2020) investigated the effects of propagation
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direction, inhomogeneity parameter, pores characteristics, pore
fluid viscosity, crack radius, crack density and local fluid flow (LFF)
on the reflection characteristics of inhomogeneous waves at the
surface of a cracked porous solid with penny-shaped inclusions.
Zhang et al. (2019) introduced a mathematical model based on the
Biot-Rayleigh theory developed by Ba et al. (2011) to investigate the
wave motion in a cracked porous solid with penny-shaped in-
clusions. They formulated the governing equations assimilating
most of the crack characteristics of cracked porous solid. They
analyzed the influences of three key parameters (crack radius, crack
density and aspect ratio) on the propagation characteristics (ve-
locity/attenuation) of fast P and SV waves. In the present problem,
we analyze the contribution of reflected longitudinal waves toWIFF
in the cracked porous solid. For this purpose, we investigate the
time harmonic plane waves in cracked porous solid by employing
the mathematical model proposed by Zhang et al. (2019). The so-
lution of the model is obtained in the form of the Christoffel
equations. The solution of the Christoffel equations indicates that
there exist three dilatational waves and one shear wave. These
waves are attenuated in nature due to their complex and
frequency-dependent velocities. These complex velocities are
resolved in terms of the phase velocities and attenuation co-
efficients. The reflection coefficients are calculated at the sealed
pore stress-free surface of cracked porous solid for the incidence of
P1 and SV waves. The contribution of three longitudinal waves to
the induced fluid in the cracked porous solid is calculated using the
reflection coefficients of these longitudinal waves. We analytically
show that the fluid flow induced by these longitudinal waves is
directly associated to their respective reflection coefficients. A
specific numerical example is considered to discuss the impacts of
various parameters on the propagation characteristics (phase ve-
locity/attenuation), reflection coefficients and WIFF of longitudinal
waves.
2. Basic equations

Following Zhang et al. (2019), the governing wave propagation
equations, which assimilate most of the crack characteristics like
crack radius, crack density, aspect ratio etc., of the cracked porous
media with penny-shaped inclusions in absence of body forces are
given by

tij;j ¼ r€ui þ rf €vi þ rf €wi;

�
�Pf1

�
’i
¼ rf €ui þm1€vi þ

h

k1

F10

F1
_vi;

�
�Pf2

�
’i
¼ rf €ui þm2 €wi þ

h

k2

F20

F2
_wi; (1)

where h is the fluid viscosity, k1ðk2Þ is the permeability of the host
medium (inclusions), rð¼ ð1�FÞrs þFrf Þ denotes the density of
the porous aggregate, rf ðrsÞ is the density of pore fluid (grain). ui, vi,
andwi are the particle displacements of the rock frame, fluid in host
medium, and fluid in inclusion, respectively. The dissipation co-
efficients m1 and m2 are defined as follows (Biot, 1962a).

mk ¼
tkrf
Fk

; ðk ¼ 1; 2Þ;

where t1ðt2Þ defines the tortuosity of host medium (inclusions).
F ¼ F1 þ F2 is the total porosity of the considered medium, is
consisting of host medium porosity F1ð ¼ n1F10Þ, and inclusions
porosity F2ð ¼ n2F20Þ. n1ðn2Þ represents the volume fraction of host



;
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medium (inclusions). F10ðF20Þ denotes the local porosity of host
medium (inclusions).

Following Zhang et al. (2019), the fluid variation ð2Þ described by
the periodic cylindrical oscillations between the host porous frame
and penny-shaped inclusions is given by

2¼ 1
F1

 
1�R20

R2

!
; (2)

where R denotes the radius of the penny-shaped inclusions after
LFF.

Zhang et al. (2019) derived the LFF governing equation by
generalizing Rayleigh's theory (Rayleigh, 1917) and Biot poroelas-
ticity theory (Biot, 1962a). With 2 as a generalized coordinate, the
Lagrange's equation for LFF is written as

�
3
8
þ F20

2F10
ln

Lþ R0
R0

�
F2
1F2rf R

2
0€2þ

�
3h
8k2

þ h

2k1
ln

Lþ R0
R0

�
F20F

2
1F2rf R

2
0 _2

¼ F1F2ða1M1 � a2M2ÞV:uþF1F2ðM1V:v �M2V:wÞ
þ F2

1F
2
2ðM1 þM2Þ2; (3)

where L �
0
@¼

ffiffiffiffiffi
R2
0

12

q 1
A denotes the characteristic length of the fluid

flow and R0 is the crack radius.
The stress-strain relations are given by

tij ¼
�
lcuk;k þa1M1vk;k þa2M2wk;k þF1F2ða1M1 �a2M2Þ2

�
dij

þ m
�
ui;j þuj;i

�
;

�
�Pf1

�
¼ �a1M1uk;k þM1vk;k þM1F1F2 2

�
dij;

�
�Pf2

�
¼ �a2M2uk;k þM2wk;k �M2F1F2 2

�
dij; (4)

where dij is the Kronecker delta, tij is the total stress, and Pfm are the
pore-fluid pressures in each phase. m denotes the shear modulus of
rock (composite). The elastic constants are given by
lc ¼ ð1� FÞKs � 2
3
mþ

 
2� Ks

Kf

!
ða1F1M1 þ a2F2M2Þ �

 
1� Ks

Kf

!�
F2
1M1 þF2

2M2

�
;

a1 ¼ bF1Ks

gKf
þF1; a2 ¼ F2Ks

gKf
þ F2; M1 ¼ Kf�

b

g
þ 1
�
F1

; M2 ¼ Kf�
1
g
þ 1
�
F2

; g ¼ Ks

Kf

0
BB@ bF1 þ F2

1� F� Kb

Ks

1
CCA;

b ¼ F20

F10

0
BB@
1� ð1� F10Þ

Ks

Kb1

1� ð1� F20Þ
Ks

Kb2

1
CCA; Kb ¼ 2

3

�
1þ nB
1� 2nB

�
mb; mb ¼ ms

�
1� F

1� bB
� BBε

�
;

bB ¼ 2
15

�
4� 5nB
1� nB

�
; BB ¼ 32

45

�ð1� nBÞð5� nBÞ
2� nB

�
;

where Kb is dry-rock moduli of the composite (Thomsen, 1985). ms
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denotes the shear modulus of solid grains. The porosity of cracks
can be expressed as Fc ¼ 2pεg*, where F2 ¼ Fc. g* represents the
crack aspect ratio. ε represents the crack density, and nB represents
the Poisson's ratio. The dry bulk modulus of the host medium is

given by (Pride et al., 2004) Kb1 ¼ ð1�F10ÞKs

1þc1F10
, and dry modulus of

inclusion is obtained from the relation n2
Kb2

¼ 1
Kb
� n1

Kb1
. c1 is the

consolidation parameter of host medium.
3. Harmonic plane waves

For time harmonic vibrations of the material particles ð� e�iutÞ
with angular frequency u, equation (3) is solved as follows.

2 ¼ l0V:uþ l1V:v þ l2V:w;

ðl0; l1; l2Þ ¼
�
ða2M2 � a1M1;�M1;M2 Þ

.h
ðF1F2Þ�

M1 þM2 þ u2
ε1

�i�
; (5)

where ε1 ¼
�
3
8 þ F20

2F10
ln LþR0

R0

�
rf

R2
0

F2
þ i

u

�
3h
8k2

þ h
2k1

ln LþR0
R0

�
F20

R2
0

F2
.

The parameters lj;ðj ¼ 0; 1; 2Þ, in the above equation control the
fluid flow 2 between the host medium and inclusions. So, the
absence of LFF is defined with l0 ¼ l1 ¼ l2.

Equations of motion in terms of the displacement components
are as follows.

ða0 þmÞuj;ij þ a1vj;ij þ a2wj;ij þ mui;jj ¼ r€ui þ rf €vi þ rf €wi;

b0uj;ij þ b1vj;ij þ b2wj;ij ¼ rf €ui þm1€vi þ g1 _vi;

c0uj;ij þ c1vj;ij þ c2wj;ij ¼ rf €ui þm2 €wi þ g2 _wi; (6)

where a0 ¼ lc þ l0l3, a1 ¼ a1M1 þ l1l3, a2 ¼ a2M2 þ l2l3,

b0 ¼ M1ða1 þ l0F1F2Þ; b1 ¼ M1ð1þ l1F1F2Þ; b2 ¼ M1F1F2l2

c0 ¼M2ða2�l0F1F2Þ; c1 ¼�M2l1F1F2; c2 ¼M2ð1�F1F2l2Þ;



Table 1
Values of dynamical and elastic constants of the cracked porous rock (Tang et al.,
2012).

Property Value

Ks (GPa) 37.9
ms (GPa) 32.6
Kf (GPa) 2.5
rs (kg/m

3) 2650
rf (kg/m

3) 1000
h(Pa.s) 0.001
F10 0.25
F20 0.35
k1(Darcy) 0.1
k1(Darcy) 100
c1 11
t1 2.4
t2 1
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l3 ¼ F1F2ða1M1 � a2M2Þ; g1 ¼ h

k1

F10

F1
; g2 ¼ h

k2

F20

F2
:

Then, to obtained the solution of (6), the displacement compo-
nents are taken as

�
uj; vj;wj

�¼ �Aj;Bj;Cj
�
eiuðskxk�tÞ; j¼1; 2; 3; (7)

where s ¼ ðs1; s2; s3Þ denotes the slowness vector. The vectors A ¼
ðA1;A2;A3ÞT , B ¼ ðB1;B2;B3ÞT , and C ¼ ðC1;C2;C3ÞT , define,
respectively, the polarizations for the motions of solid particles and
fluid particles in two porous volumes (i.e., host medium and in-
clusions). The dual (complex) vector ðs1; s2; s3Þ ¼ ðn1;n2;n3Þ=V
represents the propagation/attenuation of a wave through a unit
vector ðn1;n2;n3Þ and a velocity V. By substituting (7) in (6), we can
obtain a system of nine equations, given by

h
ða0 þmÞninj �

�
m� rV2dij

�
�
i
Aj þ

h
a1ninj � rf V

2dij

i
Bj þ

h
a2ninj � rf V

2dij

i
Cj ¼0; (8)

h
b0ninj � rf V

2dij

i
Aj þ

h
b1ninj � r1V

2dij

i
Bj

þ 	b2ninj
Cj ¼0; r1 ¼m1 þ
i

u
g1; (9)

h
c0ninj�rf V

2dij

i
Ajþ

	
c1ninj



Bjþ

h
c2ninj�r2V

2dij

i
Cj¼0;

r2¼m2þ
i

u
g2:

(10)

With the help of equations (9) and (10), we can find two relations,
given by

Bi ¼GijAj; G¼ f0
e0

�
I�nTn

�
þ f0V4 þ f1V2 þ f2
e0V4 þ e1V2 þ e2

nTn; (11)

Ci ¼QijAj; Q¼ g0
e0

�
I�nTn

�
þ g0V4 þ g1V2 þ g2

e0V4 þ e1V2 þ e2
nTn; (12)

where, e2 ¼ b1c2 � b2c1; e1 ¼ � b1r2 � c2r1; e0 ¼ r1r2;

f2 ¼ b2c0 � b0c2; f1 ¼ b0r2 þ rf ðc2 � b2Þ; f0 ¼ �r2rf ;

g2 ¼ b0c1 � b1c0; g1 ¼ c0r1 þ rf ðb1 � c1Þ; g0 ¼ � r1rf :

On applying equations (11) and (12) in (8), we obtained a
Christoffel system, and is given by

DijAj ¼0; D¼ a3n
Tnþ b3

�
I�nTn

�
; (13)

where, a3 ¼ a0 þ 2m� rV2 þ ða1

� rf V
2
� f0V4 þ f1V2 þ f2
e0V4 þ e1V2 þ e2

þ
�
a2 � rf V

2
� g0V4 þ g1V2 þ g2
e0V4 þ e1V2 þ e2

;

b3 ¼ m� V2
�
r þ rf

�
f0þg0
e0

��
, I is the third order identity matrix

and nT represents the transpose of the row-matrix n ¼ ðn1;n2;n3Þ .
The non-trivial solution of system of equation (13) demonstrates

the existence of four (three longitudinal and one shear) waves in
the cracked porous solid with penny-shaped inclusions. The non-
trivial solution of (13) is ensured by vanishing the determinant
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ð¼ a3b23Þ of thematrix a3nTnþ b3ðI � nTnÞ. Therefore, the previous
system is algebraically translated into two sub-systems, which
produce the dynamics of wave propagation in the cracked porous
solid.

The first one (i.e. a3 ¼ 0) implies that

D3V
6 þD2V

4 þ D1V
2 þ D0 ¼ 0; (14)

where

D3 ¼ �
h
re0 þ rf ðf0 þ g0Þ

i
;

D2 ¼
h
ða0 þ2mÞe0 þ a1f0 þ a2g0 � re1 � rf ðf1 þ g1Þ

i
;

D1 ¼
h
ða0 þ2mÞe1 þ a1f1 þ a2g1 � re2 � rf ðf2 þ g2Þ

i
;

D0 ¼ ½ða0 þ2mÞe2 þ a1f2 þ a2g2�:
As the coefficients Dj in (14) are complex due to the ubiquity of

viscous fluid in both host medium and inclusions, so their roots are
also complex. Therefore, three complex roots of the previous
equation demonstrate the existence of three attenuated waves in
the present medium. From equation (13), it is found that the po-
larization vector ðA1; A2; A3Þ, is parallel to n, so these waves are
called longitudinal waves. These waves, with velocities defined by
Vj; ðj¼ 1; 2; 3Þ; are named as P1; P2; P3 waves, respectively.

Another condition (i.e. b3 ¼ 0) yields

m�V2
�
rþ rf

�
f0 þ g0

e0

��
¼0: (15)

Corresponding to this condition, it founds that the polarization
vector ðA1;A2;A3Þ, parallel to the row or column of the symmetric
matrix ðI � nTnÞ. Therefore, the solution of equation (15) demon-
strates the existence of lone transverse wave propagating with

complex velocity V4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=

�
rþ rf

�
f0þg0
e0

��s
in the considered

medium. Finally, we have four attenuated waves propagating in a
dissipative cracked porous solid with penny-shaped inclusions. For
each of these waves, the complex velocity is resolved as V ¼ VR þ
iVI , to define the phase velocity a ¼ jV j2=VR and attenuation coef-
ficient b ¼ � 2VI=VR.

Plunging (11) and (12) into equation (7), the displacements of
fluid particles in the host medium and penny-shaped inclusions for
three longitudinal waves are found to be function of displacement



Fig. 1. Effect of crack density (ε) on the phase velocities ða1; a2; a3 ; a4Þ and attenuation coefficients ðb1; b2; b3; b4Þ of P1; P2 ; P3; SV waves, respectively; R0 ¼ 0:005m; g* ¼
0:003; nb ¼ 0:3.
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of solid particles and which are given by

v¼GðVÞ; GðVÞ ¼ f0V4 þ f1V2 þ f2
e0V4 þ e1V2 þ e2

;

w¼QðVÞ; QðVÞ ¼ g0V4 þ g1V2 þ g2
e0V4 þ e1V2 þ e2

: (16)
1394
In the same manner, the displacements of fluid particles in the
host medium and penny-shaped inclusions for transverse wave are
also found to be function of displacement of solid particles and
which are given by

vj ¼
f0
e0
uj; wj ¼

g0
e0
uj; ðj¼1; 2; 3Þ: (17)



Fig. 2. Effect of crack radius (R0) on the phase velocities ða1 ; a2; a3; a4Þ and attenuation coefficients ðb1; b2; b3; b4Þ of P1 ; P2; P3; SV waves, respectively; ε ¼ 0:2; g* ¼ 0:002;
nb ¼ 0:3.
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4. Formulation of the problem

As our plan is to analyze the contribution of reflected longitu-
dinal waves to the induced fluid flow in the cracked porous solid for
the occurrence of P1 and SV waves, we have considered a cracked
porous half-space for this purpose. A train of longitudinal P1 (or
shear SV) waves is engendered at infinity and is pointed obliquely
at the sealed pore stress-free surface of cracked porous solid.
1395
4.1. Geometry of the problem

In rectangular Cartesian coordinate system ðx1; x2; x3Þ, cracked
porous solid occupies the region x3 >0, bounded by the horizontal
plane x3 ¼ 0. In the present problem, we have considered the wave
motion in x1x3-plane. In this plane, a plain inhomogeneous (P1 or
SV) wave with velocity V0 and angular frequency u is striking the
boundary surface x3 ¼ 0 obliquely at an angle qwith normal to the
free surface. Consequently, four inhomogeneous waves (P1; P2; P3;



Fig. 3. Effect of crack aspect ratio (g*) on the phase velocities ða1; a2; a3; a4Þ and attenuation coefficients ðb1 ; b2; b3; b4Þ of P1; P2; P3; SV waves, respectively; ε ¼ 0:25; R0 ¼
0:0053m; nb ¼ 0:3.
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SV) are generated in the cracked porous solid.
4.2. Displacements

The cracked porous solid behaves dissipative due to the ubiquity
of viscous fluids in both host medium and penny-shaped in-
clusions. Therefore, all the incident and reflected waves in the
considered medium are attenuated. The conception of attenuated
1396
waves has been completely explained in details by Kumar and
Sharma (2013). The horizontal slowness of incident wave is given
by (Borcherdt, 2009)

s¼ðjP0j =uÞsin q� iðjA0j =uÞsinðq�g0Þ; (18)

in which



Fig. 4. Effect of Poisson's ratio (nb) on the phase velocities ða1; a2; a3; a4Þ and attenuation coefficients ðb1; b2; b3; b4Þ of P1; P2; P3; SV waves, respectively; ε ¼ 0:2; R0 ¼ 0:007m;
g* ¼ 0:002.
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jP0j ¼
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jA0j¼
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(20)

where q denotes the angle of occurrence. P0 (A0) represents the



Fig. 5. Effect of WIFF on the phase velocities ða1; a2; a3; a4Þ and attenuation coefficients ðb1 ; b2; b3; b4Þ of P1; P2 ; P3; SV waves, respectively; ε ¼ 0:2; R0 ¼ 0:007m; g* ¼ 0:003;
nb ¼ 0:3.
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propagation (attenuation) vector. g0 denotes the angle of attenu-
ation betwixt propagation vector and attenuation vector. V0 iden-
tifies the velocity of incident wave.

The general displacement of material particles in x1x3-plane
associated with incident/reflected waves is defined as

�
uj; vj;wj

�¼ð1;G0;Q0ÞAð0Þ
j eiuðsx1þq0x3�tÞ
1398
þ
X4
k¼1

ZkA
ðkÞ
j

�
1;Gj;Qj

�
eiuðsx1þqjx3�tÞ; j¼1; 3; (21)

where, values 1 to 4 of index k identify the reflected P1; P2; P3 and
SV waves, respectively. The index ’0’ denotes the incident wave, so
that V0 ¼ Vk and q0 ¼ �qk denote the incident wave which is



Fig. 6. Amplitude ratios ðjZ1 j; jZ2 j; jZ3j; jZ4jÞ of reflected waves; u ¼ 2p� 300Hz; ε ¼ 0:15, R0 ¼ 0:0053m; g* ¼ 0:003; nb ¼ 0:3; g0 ¼ 450; Incident P1 wave.
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recognized with index ’k’. The (Zk) is the relative excitation factor of
reflected waves. Here, Gk ¼ GðVkÞ, Qk ¼ QðVkÞ, (k ¼ 1, 2, 3), for

longitudinal waves and G4 ¼ f0
e0
, Q4 ¼ g0

e0
, for shear wave. The hor-

izontal slowness of each reflected waves is same as that of the
incident wave (Snell's law). The vertical slowness of reflectedwaves

is defined as qk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 

1
V2

k
� s2

!vuut ; k ¼ 1; 2; 3; 4: In the x1x3-plane,

the polarization vectors ðAðkÞ
1 ;0;AðkÞ

3 Þ of the reflected P-waves are

calculated as ðAðkÞ
1 ;0;AðkÞ

3 Þ ¼ ðs;0; qkÞVk; ðk¼ 1; 2; 3Þ; and for the

transverse wave is calculated as ðAð4Þ
1 ;0;Að4Þ

3 Þ ¼ ðq4;0; � sÞV4:

4.3. Boundary conditions

Boundary conditions are steamed from the physical situations
exist there to solve a specific problem. In the present problem,
boundary conditions are considered at the stress-free surface x3 ¼
0. Stress-free surface means both normal as well as tangential
stresses should be vanished at that surface. We have assumed
1399
sealed surface so as to preclude the release of pore-fluids from host
medium to inclusions and vice-versa. In case of fully sealed pores
boundary surface, discharge of fluid is not allowed out of aggregate.
Hence, the boundary conditions at the surface x3 ¼ 0 with sealed
pores and fractures are given by

iÞ t33 ¼0;

iiÞ t31 ¼0;

iiiÞ _v3 ¼0;

ivÞ _w3 ¼0: (22)
4.4. Reflection

In terms of four unknown (Z1;Z2;Z3;Z4), the boundary conditions
in (22) are transformed into a system of four simultaneous non-



Fig. 7. Amplitude ratios ðjZ1j; jZ2j; jZ3j; jZ4jÞ of reflected waves; u ¼ 2p� 300Hz; R0 ¼ 0:0053m; g* ¼ 0:003; nb ¼ 0:3; g0 ¼ 450; Incident P1 wave.
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homogeneous linear equations which is given by

X4
j¼1

GijZj ¼Hi; ði¼1; 2; 3; 4Þ; (23)

where the coefficients Gij; ði¼ 1; 2; 3; 4; j¼ 1; 2; 3; 4Þ; are
expressed as follows

G1j ¼
�
a0 þ a1Gj þ a2Qj

��
sAðjÞ

1 þ qjA
ðjÞ
3

�
þ 2mqjA

ðjÞ
3 ;

G2j ¼m
�
sAðjÞ

3 þ qjA
ðjÞ
1

�
;

G3j ¼GjA
ðjÞ
3 ;

G4j ¼QjA
ðjÞ
3 :

The residues Hi in system (23) for incident P1ðSVÞ wave is
1400
written as follows:

H1 ¼ �G11ð�G14Þ;H2 ¼ �G21ð�G24Þ; H3 ¼ �G31ð�G34Þ;
H4 ¼ � G41ð�G44Þ:

Using Gauss elimination method, the system of equation (23) is
solved numerically for complex unknowns Zjs.
4.5. Wave-induced fluid flow

Using the relations (16)-(17) in (5), theWIFF in pores can only be
found as a function of dilation of solid particles and is defined as
follows:

2¼ ½l0 þ l1GðVÞþ l2QðVÞ��u1;1 þu3;3
�
: (24)

Using equation (21) in the previous equation, we obtained



Fig. 8. Amplitude ratios ðjZ1j; jZ2j; jZ3 j; jZ4 jÞ of reflected waves; u ¼ 2p� 300Hz; ε ¼ 0:15; R0 ¼ 0:0053m; g* ¼ 0:003; nb ¼ 0:3; g0 ¼ 450; Incident SV wave.
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2ðVkÞ¼ iuZk½l0 þ l1GðVkÞþ l2QðVkÞ�
�
�
sAðkÞ

1 þ qkA
ðkÞ
3

�
eiuðsx1þqjx3�tÞ;

ðk¼1; 2; 3; 4Þ: (25)

If we assimilate the existence condition of shear wave in the

above equation, then we can check that 2ðV4Þ ¼ 0: It implies that
WIFF in pores is controlled by three longitudinal waves. Therefor,
2ðV1Þ; 2ðV2Þ; 2ðV3Þ define the contributions of P1; P2; P3 waves,
respectively, to the total fluid flow. As Vk is complex, so is 2ðVkÞ.
Being a physical quantity, the fluid flow induced by longitudinal
waves (i.e., 2k) is calculated as a real part of its complex form (2k ¼
Rð2ðVkÞÞ. The quantity 21 þ 22 þ 23 defines the total fluid flow
induced in the cracked porous solid due to the incidence of P1 (or
SVÞ wave at the stress-free surface of cracked porous solid with
penny-shaped inclusions.
5. Numerical example

A sandstone (cracked porous solid), which is constituted by
1401
high-porosity high-permeability penny-shaped inclusions and
low-porosity low-permeability host medium, is considered for
numerical purpose. The values of dynamical and elastic constants
of the cracked porous rock used for numerical purpose are given in
Table 1.
6. Numerical discussion

6.1. Effect of various parameters on the velocity and attenuation

The numerical example explains the impact of key parameters
of cracks, WIFF and Poisson's ratio on the wave propagation char-
acteristics (velocity/attenuation). The phase velocities
ða1; a2; a3; a4Þ and attenuation coefficients ðb1; b2; b3; b4Þ of
P1; P2; P3; SV waves are computed with frequency u for distinct
parameters are exhibited in Figs. 1e5.

Fig. 1 exhibits the variations of phase velocities ða1; a2; a3; a4Þ
and attenuation coefficients ðb1; b2; b3; b4Þ of P1; P2; P3; SV waves
with frequency for three different values of crack density (ε). An
increment in crack density reduces the velocities of faster (P1; SV)
waves, which implies that faster waves may slow down with the



Fig. 9. Amplitude ratios ðjZ1 j; jZ2 j; jZ3j; jZ4jÞ of reflected waves; u ¼ 2p� 300Hz; R0 ¼ 0:0053m; g* ¼ 0:003; nb ¼ 0:3; g0 ¼ 450; Incident SV wave.
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increment in ε. In case of slower (P2;P3) waves, velocity of P2 wave
enlarges with the increment in ε and on contrary, P3 wavemay slow
down a bit with the increment of ε. However, the decrement of
velocities of faster waves (i.e., P1; SV) is very high as compared to
the decrement of velocity of slower P3 wave. An increment in ε

reduces (enlarges) the attenuation of P1; P3 (P2; SV) waves. The fast
(slow) waves attenuate more (less). Fig. 2 displays effect of crack
radius (R0) on phase velocities and attenuation coefficients. Impact
of R0 is not noticed on the velocity and attenuation of fast SV wave.
But, R0 has a little effect on the velocity of fast P1 wave. On the
contrary, slower waves propagation characteristics (velocity/
attenuation) have a strong dependence on the size of inclusions as
well as wave frequency. Fig. 3 illustrates the influence of crack
aspect ratio (g*) on the phase velocities and attenuation co-
efficients of P1; P2; P3; SV waves with frequency. This figure clearly
shows that the propagation characteristics of every wave have a
strong dependence on the crack aspect ratio. Quite similar to Fig. 1,
the velocities of faster waves reduces with the increment in the
value of g*. Faster waves are highly perceptive to the crack aspect
ratio of the penny-shaped inclusions. An increment in g* may
enlarge the attenuation of faster waves. But, attenuation of slower
P2 (P3) waves enlarges (reduces) with the increment in g*. Another
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major parameter that can affect the wave propagation in cracked
porous solid is the Poisson's ratio nb. The variation of phase veloc-
ities and attenuation coefficients of P1; P2; P3; SV waves with nb are
displayed in Fig. 4. As perceived from figure, with the increase of nb,
velocities of P1, SV waves increase significantly, whereas slower P2
wave experiences a slight increase in velocity. This implies that
increase in nb strongly speeds up the faster waves. But, increase in
nb does not upset the velocity of P3 wave and attenuation coefficient
of SV wavemuch. From the comparison of plots in Figs.1, Figs. 3 and
4, it is perceived that with the increase of ε and g*, faster waves
significantly slow down while with the increase in nb, these waves
are strongly speeded up. Fig. 5 exhibits the impact of WIFF on
a1; a2; a3; a4 and b1; b2; b3; b4 with frequency. It is clearly
evident from this figure, the ubiquity of WIFF reduces the velocities
as well as attenuation coefficients of longitudinal waves. But, the
ubiquity of WIFF does not upset the velocity/attenuation of shear
wave.

6.2. Effect of various parameters on the reflection coefficients

6.2.1. Incident P1 wave
Fig. 6 exhibits the impact of WIFF on the amplitude ratios ðjZ1j;



Fig. 10. Effect of wave frequency on the WIFF; ε ¼ 0:15; x3 ¼ 0:9m; R0 ¼ 0:0053m;
g* ¼ 0:003; nb ¼ 0:3; g0 ¼ 550; Incident P1 wave. Fig. 11. Effect of crack density on the WIFF; u ¼ 2p� 100kHz; x3 ¼ 0:9m; R0 ¼

0:007m; g* ¼ 0:002; nb ¼ 0:3; g0 ¼ 450; Incident P1 wave.
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jZ2j; jZ3j; jZ4jÞ of the reflected waves. A minute impact of WIFF is
perceived on the behavior of P1wave. But, shear wave is not affected
by the ubiquity of WIFF. The slower waves are strengthened a lot in
the absence of WIFF. It means ubiquity of WIFF weakens the
reflection capabilities of slower waves. The effect of crack density
on jZ1j; jZ2j; jZ3j; jZ4j with incident direction q are displayed in
Fig. 7. An increment in crack density strongly enlarges the reflection
capability of P1 wave. But, reflection capability of SV wave may
weakenwith the increment of crack density. A substantial impact of
crack density is perceived at the normal incidences of P2 and P3
waves. However, at both grazing and normal incidences, faster
waves are not perceptive to the alteration in crack density.

6.2.2. Incident SV wave
Fig. 8 shows the influence ofWIFF on the amplitude ratios of the

reflected waves. The P1wave is strongly strengthened in the ubiq-
uity ofWIFF near SV wave critical incidence. But, a minute impact of
WIFF is perceived on shear wave near critical incidence. Critical
angles are perceived for both P1 (around 440) and SV (around 330)
waves. The slower waves are strengthened considerably in the
absence of WIFF. It means ubiquity of WIFF weakens the reflection
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capabilities of slower waves. The effect of crack density on the
amplitude ratios with incident direction q is displayed in Fig. 9. A
substantial impact of crack density is perceived on the P1 wave for
230 < q<400 and a slightly less impact is seen for 500 < q<800. But,
reflection capability of SV wave may strengthen with the increase
of crack density for 220 < q<390. A substantial impact of crack
density is perceived on the P2 and P3 waves. However, near both
normal and grazing incidences, all the waves are not perceptive to
the alteration in crack density.

6.3. Effect of various parameters on the wave-induced fluid flow

6.3.1. Incident P1 wave
The WIFF of longitudinal waves ð2k ;k ¼ 1; 2; 3Þ, reflected from

the sealed-pore stress-free surface of cracked porous solid con-
taining penny-shaped inclusions, are computed with incident di-
rections (q) for distinct values of wave frequency (u), key
parameters of cracks and distance from boundary. The variations of
2k with frequency is shown in Fig. 10. From this figure it can be
inferred that the significant contributors to the fluid flow are P1 and
P2 waves. The enrichment of P1 wave to the fluid flow enlarges with



Fig. 12. Effect of crack radius on the WIFF; u ¼ 2p� 100kHz; ε ¼ 0:2; x3 ¼ 1m; g* ¼
0:003; nb ¼ 0:3; g0 ¼ 450; Incident P1 wave.

Fig. 13. Effect of depth on the WIFF; u ¼ 2p� 100kHz; ε ¼ 0:2; R0 ¼ 0:0053m; g* ¼
0:003; nb ¼ 0:3; g0 ¼ 450; Incident P1 wave.
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the increment in frequency. Fluid flow induced by P1 wave may
disappear at lower frequency, especially, when u ¼ 0:01kHz. It
reduces (enlarges) with the increment (decrement) in q, specif-
ically, for q � 700ðq >700Þ. However, contribution of P2 wave re-
duces with the increment of incident angle. The fluid flow induced
by P3 wave enlarges (reduces) with the increment (decrement) in
frequency (q). The fluid flow induced by P2 and P3 waves disappear
for incidence approaching the grazing direction. On contrary, fluid
flow induced by P1 wave does not disappear at this incidence. The
WIFF of all the longitudinal waves may be highly perceptive to the
alteration in wave frequency. Fig. 11 displays the variations of 2k
with crack density. It is clearly visible that crack density signifi-
cantly influences the WIFF. The fluid flow induced by P1 wave en-
larges with the increment in crack density. It reduces with the
increment in q. On the contrary, fluid flow induced by P2 wave
reduces with the increment in crack density. The contribution of P3
wave to the fluid flow ismuch smaller as compared to contributions
of P1 and P2 waves. Fig.12 illustrates the effect of crack radius on the
WIFF (2k ; k ¼ 1; 2; 3). From this figure, it is quite clear that no
impact of crack radius is perceived on the fluid flow of P1 wave. But,
fluid flow of P2 enlarges slightly with the increase in crack radius
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and it decreases with the increase in incident direction q. From
Figs. 11 and 12, it may be visualized that the contribution of the P3
wave to the wave induced fluid flow is negligible.

The variations of 2k with incident direction q at different depth
are displayed in Fig. 13. An increment in depth enlarges the fluid
flow induced by the P1wave. But it may decrease the fluid flow
induced by the P2 wave. The contribution of P2 wave to the WIFF
disappears at higher depth (i.e., x3 ¼ 2m). All longitudinal waves
are highly perceptive to alteration in depth. The variations of 2k
with incident direction q at different aspect ratios are exhibited in
Fig. 14. From the comparison of plots in this figure, it is perceived
that the impact of g* is certainly stronger on the fluid flow induced
by the P2 and P3 waves than that of P1 wave. It means these waves
are highly perceptive to the alteration in g*. The impact of g* on the
wave induced flow of P1 wave is perceived for q � 450.
6.3.2. Incident SV wave
The variations of 2k for incident SV wave with frequency is

shown in Fig. 15. A large contribution of P1 to the fluid flow is
perceived for q>300. The contribution of P1 wave to the fluid flow
may disappear for q � 300. Moreover, fluid flow induced by P1 wave



Fig. 14. Effect of crack aspect ratio on the WIFF; u ¼ 2p� 100kHz; ε ¼ 0:2; x3 ¼
0:9m; R0 ¼ 0:0053m; nb ¼ 0:3; g0 ¼ 450; Incident P1 wave.

Fig. 15. Effect of wave frequency on the WIFF; ε ¼ 0:15; x3 ¼ 0:9m; R0 ¼ 0:0053m;
g* ¼ 0:003; nb ¼ 0:3; g0 ¼ 550; Incident SV wave.
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may disappear at lower frequency, especially, when u ¼ 0:01kHz.
Further, from the plots of this figure, two specific directions are
perceived; one near q ¼ 330 and other near q ¼ 600, where WIFF
may enhance rapidly. Similar to Fig. 10 (incident P1 wave), a sub-
stantial contribution of P2 wave to fluid flow is also found for the
incident SV wave. The contribution of P3 wave enlarges with the
increment in frequency for the entire range of q. The fluid flow
induced by these waves disappears at both normal and grazing
incidences. Again, analogous to Fig. 10, WIFF of all the longitudinal
wavesmay be highly perceptive to the alteration inwave frequency.
Fig. 16 displays the variations of 2k with incident direction q at
three different values of crack density. It is clearly visible that crack
density significantly influences the WIFF. The fluid flow induced by
P1 wave is significantly affected by the crack density for q> 300.
But, fluid flow induced by slower waves is significantly influenced
by the crack density in the entire range of q. The contribution of the
P3 wave to the fluid flow is negligible as compared to contributions
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of P1 and P2 waves. Fig.17 illustrates the effect of crack radius on the
WIFF (2k ;k ¼ 1; 2; 3). The impact of crack radius is not perceived on
the fluid flow of P1 wave. But, the fluid flow of P2 enlarges slightly
with the increment in crack radius for q>380 and it enlarges
significantly for 380 < q. Analogous to the case of incident P1 wave
in Fig. 12, it is again visualized from the plots in this figure that the
contribution of the P3 wave to the wave induced fluid flow is
negligible. The variations of 2k with incident direction q at different
depth are displayed in Fig. 18. An increment in depth enlarges the
fluid flow induced by the P1 wave. However, a little impact of depth
is perceived on it for 300 < q<530. Little bit contribution of P2 wave
to the wave-induced fluid is perceived for x3 ¼ 1:5m and it dis-
appears at higher depths (i.e., x3 ¼ 2m). The behavior of P3 wave at
the depths x3 ¼ 1:5m and x3 ¼ 2m is quite similar to P2 wave.
Fig. 19 displays the variations of 2k with incident direction q at three
different values of aspect ratio. The WIFF of P1 wave may disappear



Fig. 16. Effect of crack density on the WIFF; u ¼ 2p� 100kHz; x3 ¼ 0:9m; R0 ¼
0:007m; g* ¼ 0:003; nb ¼ 0:3; g0 ¼ 450; Incident SV wave.

Fig. 17. Effect of crack radius on the WIFF; u ¼ 2p� 100kHz; ε ¼ 0:2; x3 ¼ 1m; g* ¼
0:003; nb ¼ 0:3; g0 ¼ 450; Incident SV wave.
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for all values of aspect ratios in the range of q2½0; 300�. A little
impact of g* on the wave induced flow of P1 wave is perceived for
480 < q<550. From the comparison of plots in this figure, it is
perceived that the impact of g* is certainly stronger on the fluid
flow induced by the P2 and P3 waves than that of P1 wave. It means
these waves are highly perceptive than P1 wave to the alteration in
g*.

7. Conclusions

The key objective of this investigation is to analyze the wave
characteristics (velocity/attenuation), reflection coefficients and
WIFF in the cracked porous solid containing penny-shaped in-
clusions. In particularly, the contribution of longitudinal waves to
WIFF is derived analytically and analyzed numerically with the help
of specific numerical example. The effects of three key factors
(crack density, crack radius, crack aspect ratio) of penny-shaped
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cracked inclusions, depth and wave frequency are analyzed on
contribution of fluid flow induced by the longitudinal waves. We
have analytically showed that the fluid flow induced by each lon-
gitudinal wave is linked directly to its reflection coefficient. Some
conclusions are addressed which may be drawn from the discus-
sions of the numerical results.

1. The presence of cracks in the porous rock can notably reduce the
elastic modulli of the rock. The influence of crack on the elastic
wave propagation is accounted through crack-dependent dry
bulk modulus. Overall, the influence of cracks is assimilated by
considering three main factors of crack solid and these factors
are crack density, crack radius and crack aspect ratio. The crack
development is directly proportionate to the crack density
(Shekhar and Parvez, 2016). The inverse impact of crack density
is perceived on the faster waves (P1 and SV). This implies that
the crack growth slows down the faster waves.



Fig. 18. Effect of depth on the WIFF; u ¼ 2p� 100kHz; ε ¼ 0:2; R0 ¼ 0:0053m; g* ¼
0:003; nb ¼ 0:3; g0 ¼ 450; Incident SV wave.

Fig. 19. Effect of crack aspect ratio on the WIFF; u ¼ 2p� 100kHz; ε ¼ 0:2; x3 ¼ 0:9m;
R0 ¼ 0:0053m; nb ¼ 0:3; g0 ¼ 450; Incident SV wave.
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2. An increase in crack aspect ratio (Poisson's ratio) rapidly slow
down the faster waves. The P1 wave is quite sensitive to crack
radius but shear wave is not sensitive.

3. A remarkable impact of crack parameters, Poisson's ratio, WIFF
and wave frequency is perceived on the velocities and attenu-
ation coefficients of slower waves except on the velocity of P3
wave which is not perceptive to nb.

4. The attenuation coefficient of shear wave is not affected by crack
radius, Poisson's ratio and WIFF. The WIFF has no impact on the
SV wave but in the presence of WIFF, the longitudinal waves
slow down rapidly i.e. velocities of these waves significantly
decrease in the ubiquity of WIFF.

5. It is found analytically as well as graphically (Fig. 5) that shear
wave does not impart to the WIFF. Therefore, fluid flow is
induced only due to the propagation of longitudinal waves.

6. The reflection capabilities of slower waves are weakened in the
presence of WIFF. For incident P1 wave, reflection capability of
P1 (SV) wave enlarges (reduces) with the increment (decre-
ment) in crack density.

7. A significant impact of crack density is observed on the slower
waves for both incident waves.
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8. For the incidence of SV wave, the critical angle is found for P1
(SV) waves.

9. The P1 and P2 waves induce more fluid flow, when the incidence
of SV wave is considered. The fluid flow induced by the P1 wave
is not affected by the variations of two crack parameters-crack
radius and aspect ratio, for the incidence of both P1 and SV
waves. The contribution of P2 wave to the WIFF disappears at
higher depth (i.e., x3 ¼ 2m) for both cases. The contribution of
P3 wave is negligible. Compared to P1 wave, the fluid flow
induced by the P2 and P3 waves are highly sensitive to crack
density, crack radius and crack aspect ratio. The positive value
2k represents the flow of pore from the host medium to the
penny-shaped inclusions.

Finally, an analysis of wave characteristics (velocity/attenua-
tion), reflection coefficients and WIFF in cracked porous solid can
facilitate to understand some scientific issues in exploration
geophysics and seismology. The wave characteristics (velocity/
attenuation) are mostly used to analyze the subsurface fluid
movement. This study may play an important role in probe of
prospects the oil/gas deposits in the cracked porous solid. The
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resolution of various crack characteristics (i.e., crack density, crack
radius and aspect ratio) and flow characteristics of the cracked
porous solid are dependent on the knowledge of poroelastic
reflection signatures. The knowledge of these aspects may be
helpful in seismic evaluation and reservoir portrayal.
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