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Abstract

An important application of spectral decomposition (SD) is to identify subsurface geological anomalies such as channels
and karst caves, which may be buried in full-band seismic data. However, the classical SD methods including the wavelet
transform (WT) are often limited by relatively low time—frequency resolution, which is responsible for false high horizon-
associated space resolution probably indicating more geological structures, especially when close geological anomalies
exist. To address this issue, we impose a constraint of minimizing an /, (0 <p <1) norm of time—frequency spectral coef-
ficients on the misfit derived by using the inverse WT and apply the generalized iterated shrinkage algorithm to invert for
the optimal coefficients. Compared with the WT and inverse SD (ISD) using a typical /,-norm constraint, the modified ISD
(MISD) using an /,-norm constraint can yield a more compact spectrum contributing to detect the distributions of close
geological features. We design a 3D synthetic dataset involving frequency-close thin geological anomalies and the other
3D non-stationary dataset involving time-close anomalies to demonstrate the effectiveness of MISD. The application of 4D
spectrum on a 3D real dataset with an area of approximately 230 km? illustrates its potential for detecting deep channels and
the karst slope fracture zone.

Keywords Spectral decomposition - Seismic interpretation - Inverse problem - High resolution - Deep exploration

1 Introduction

Detecting anomalous bodies in the subsurface, such as chan-
nels, karst caves, faults and alluvial fans, is one of the key
objectives in seismic exploration (e.g., Bacon et al. 2003; Qi
et al. 2014; Kang et al. 2020). These geological anomalies
will be conductive to the construction of traps and reservoirs
in the Earth, since they can usually provide storage space
and migration channel for oil and natural gas (e.g., Hart et al.
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2002; Ben-Zion 2008; Mittempergher et al. 2009). Seismic
data acquired by the dense sensors placed at the surface can
carry the information associated with such geological anom-
alies. However, due to the attenuation related to near surface
and fluids, the frequency band of seismic data is reduced
from shallow to deep, and seismic waveforms are commonly
interfered together. Therefore, it is sometimes difficult to
directly use full-band and non-stationary seismic data to
identify the subsurface geological anomalies. Decompos-
ing seismic data into certain modes with different dominant
frequencies and bandwidth can facilitate extracting intrinsic
spectral features (e.g., Li et al. 2017; Liu et al. 2019).
Spectral decomposition (SD) is one of the widely used
techniques for signal decomposition. SD that decomposes
a seismic signal into a 2D function of time and frequency
is an effective method to characterize full-band and non-
stationary signals (Partyka et al. 1999). It is often useful for
evaluating the frequency-dependent response of seismic data
associated with layered earth structures. Moreover, spec-
tral anomalies at different frequency components (e.g., at
low frequencies and high frequencies) can illuminate geo-
logical anomalous bodies of different scales (e.g., Laughlin
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et al. 2002; Li et al. 2011) and indicate hydrocarbon (such
as oil, gas or gas hydrate) in sandstone or carbonate reser-
voirs (e.g., Castagna et al. 2003; Li et al. 2012). Therefore,
SD has been routinely used in thin-bed prediction (Marfurt
and Kirlin 2001), reservoir characterization (Li et al. 2011),
and hydrocarbon detection (Huang et al. 2016; Naseer and
Asim 2018). As well, the amplitude-frequency spectral
components, phase-frequency spectral components or both
amplitude-frequency and phase-frequency spectral ones
are widely adopted to calculate frequency division coher-
ence (e.g., Li and Lu 2014) for detecting anomalous bodies
clearer with more geological boundary details, in contrast
to the broadband coherence.

In the last few decades, various SD methods have been
proposed and widely developed for analyzing a great vari-
ety of signals, such as the short-time Fourier transform
(STFT) (Gabor 1946), the continuous wavelet transform
(CWT) (Sinha et al. 2005), and S-transform (ST) (Stock-
well et al. 1996) with its generalized variations (Pinnegar
and Mansinha 2003a, b; Liu et al. 2018, 2019a). The clas-
sical SD methods are simple and fast to be implemented.
However, they suffer from a trade-off between the time
resolution and the frequency resolution, due to the effect
of the window function and the limitation of the Heisen-
berg uncertainty principle (Heisenberg 1927). In special,
seismic signals interfere together when two or several
geological bodies are close, which will also affect the
frequency components of local signals, especially for the
deep. In order to yield high time resolution, the isofre-
quency amplitude slice obtained by using the conventional
SD methods readily suffers from strong spectral energy
mixture issue across the frequency band or the spectral
leakage phenomenon (Oyem and Castagna 2013). Con-
sequently, the isofrequency amplitude slice is still the
superposition of different frequency components, which
is not easy to interpret close geological bodies. In addition,
the multitude of these methods signifies the non-unique
nature of spatiotemporal transformation (Castagna et al.
2003). The inverse spectral decomposition (ISD) method
by solving an inverse problem with a sparse spike con-
straint (Portniaguine and Castagna 2004) has the potential
to alleviate the above these issues. Without the constraint,
ISD is equivalent to the conventional SD. After the ISD is
proposed, its improvements are focused primarily on the
appropriate selection of the wavelet library (such as the
truncated sinusoid, the Ricker wavelet, the Morlet wavelet
or the extracted wavelet), the type of the constraint or the
prior information (such as the /, norm, the /;, norm, the
mixed /,—I, norm, the coherency-based constraint, or the
hierarchical Gaussian prior), and the algorithm (such as
the iterative soft thresholding algorithm, the iteratively
reweighted least-squares algorithm, spectral projected gra-
dient for /; minimization, Bregman iterative algorithm or
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sparse Bayesian learning) for solving ISD (Puryear et al.
2012; Han et al. 2012; Gholami 2013; Tary et al. 2014;
Amosu et al. 2016; Ma et al. 2019; Yuan et al. 2019). In
contrast to the development of methods, the fine applica-
tion of the ISD results is rare (Gholami 2013; Oyem and
Castagna 2013; Han et al. 2016; Li et al. 2016; Wang et al.
2018), especially for interpreting 3D seismic data more
than tens of thousands of traces, which are very common
in oil companies. Moreover, how to make full use of the
ISD results is not unimportant.

In this paper, we investigate the potential application
of a modified ISD method (named MISD for short) with
an /-norm (0 <p <1) constraint to detect close geologi-
cal anomalies along the time direction or those at the
frequency along a horizon. Similar to the typical widely
adopted /,-norm constraint, the lp-norm regularization
with the proven convergence (Raskutti et al. 2011) can
also promote the sparsity of the resulting time—frequency
spectrum (Yuan et al. 2020). However, the lp norm has the
better sparse representation than the [/, norm, and over-
comes the disadvantage that larger coefficients are penal-
ized more heavily in the /,-norm than smaller coefficients
to some extents (Candes et al. 2008). Furthermore, the
sparsity of the /,-norm (1/2<p <1) solution increases as
p decreases, whereas the sparsity of the solution for /,
norm (0 < p <1/2) does not overly change with respect to p
(Fan and Peng 2004). Xu et al. (2010) have shown that the
[, norm is an unbiased estimator which imposes strong
sparsity upon the minimization problem at hand. Based on
these advantages, the /, norm is applied to yield a more
compact or focusing time—frequency spectrum for broad-
band and non-stationary seismic signal analysis, and can
separate the frequency components of the wavelet inter-
ference and reduce spectrum leakage, which contribute to
detect the distributions of close geological features from
high-resolution spectral slices of horizons.

We begin this paper with the methodology of MISD.
Then, a 3D synthetic seismic dataset involving frequency-
close geological anomalies along the horizon and the other
3D non-stationary synthetic dataset complicated by both the
time-variant wavelets and thin-bed interference are adopted
to demonstrate the effectiveness of MISD in detecting close
channels and alluvial fans with different spatial distributions,
and to illustrate its advantages over CWT and ISD using a
typical /; norm. As well, we extracted the seismic traces
from 3D synthetic data to further explain why MISD has
the highest time—frequency resolution. At last, the applica-
tion of 4D high-resolution time—frequency spectrum on a 3D
field dataset from the Northwest China illustrate that MISD
can be used to interpret deep channels and the karst slope
fracture zone at two close frequencies, where each frequency
presents the minimum number of geological structures than
CWT and ISD using a typical /; norm.
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2 Methodology

The inverse wavelet transform of a signal s(f) can usually
be expressed as:

— 52, (1T
s(t)—//a 1//( - >C(r,a)dadr, (1

where a is the scale factor (that can be converted to fre-
quency), 7 is the translation factor, C(z, a) is the spectral
coefficient of wavelet transform, y((#—7)/a) is the wavelet
library composed by the mother wavelet through stretching
and translation, and ¢ is time. In seismic exploration, the
mother wavelet can usually be the Morlet wavelet, Ricker
wavelet, Haar wavelet alone or in combination with charac-
terize the recorded seismic data. As studies found, Ricker
wavelets can be adopted to better fit seismic data that tend
to be biased toward the lower frequencies (Ricker 1953;
Liu and Marfurt 2007). Moreover, Ricker wavelets have
been widely applied to seismic data modeling, processing,
inversion and interpretation. Consequently, we choose the
Ricker wavelet as the mother wavelet to construct the wave-
let library in this paper.

As well, the integration of the translation factor 7 in
Eq. (1) can be derived to express as a convolution form:

s(t) = /a_5/2u/(t/a) * C(t,a)da, )

where * represents the convolution operator.
It is well known that the integral can be solved discretely,
and a general expression form is obtained as follows:

K K

sty = Y Wit f) = 1. f)] = Y sit.fo), 3)

k=1 k=1

where f; (k=1, 2...,K) represents the frequency correspond-
ing to the scale factor a in Eq. (2), K represents the fre-
quency sample number, w(z, f,) corresponding to a~>"2y(t/a)
in Eq. (2) represents the frequency-dependent wavelet or
basis function, r(¢, f;) corresponding to C(t, a) represents
spectral coefficients (or the time—frequency pseudo reflec-
tivity), and s,(¢, f,) represents the decomposed stationary
signal. According to Eq. (3), a non-stationary signal can
be described by using the superposition of the convolution
results of the known wavelets with different dominant fre-
quencies and the spectral coefficients corresponding to the
dominant frequency. In this way, the inverse CWT of a non-
stationary signal can be regarded as a process of quadratic
linear superposition. Because the convolution operator in
the time domain is equal to a product operation in the fre-
quency domain, Eq. (3) can be implemented fast by using
the Fourier transform. Besides the non-stationarity caused
by the near surface and fluids, thin-bed interference can lead

to the data non-stationarity (Yuan et al. 2017). In turn, we
can decompose the non-stationary seismic data resulting
from the interference to obtain the time—frequency pseudo
reflectivity corresponding to a series of wavelets of varying
frequencies. It provides a basis for interpreting subsurface
close geological abnormalities from non-stationary data.
To facilitate the description of the subsequent inverse
problem, Eq. (3) is written in a matrix—vector formulation:

K
Y [WEfORf)] = Gm =5, 4)
k=1

where the matrix G=[W(z, ) W(, f5)... W(t, f)... W(, fr)]
represents the wavelet dictionary, W(, f,) refers to the con-
volution matrix of the frequency-dependent wavelet [w(¢,,
Jo w(ty, fi) ... w(t,, fi)-..w(ty, f)], the vector m=[R(, f))
R(t.f,)...R(t, f)...R( f;)]" represents the complex pseudo-
reflectivity, R(t, /) =[r(t,, f) r(ta, f) -7, f)-- .7 (tns )]
represents the spectral coefficients corresponding to a cer-
tain dominant frequency f;, N represents the time sample
number, [-]7 represents the transposition, and the vector s
represents a vertical trace of non-stationary signal. In this
way, a non-stationary signal can be described by using the
product of the wavelet dictionary matrix with a large col-
umn number and a long spectral coefficient column vector.
Similarly, STFT and ST (Stockwell et al. 1996) can also be
expressed in the form of Eq. (4), but only W(, f,) is dif-
ferent. In theory, the result of the conventional SD can be
obtained by solving m in Eq. (4) in a least-squares method.
Nevertheless, Eq. (4) is ill-posed since the row number of
the matrix G is usually far smaller than its column num-
ber and the frequency-dependent wavelets are bandlimited,
which lead to the solution of Eq. (4) not unique. It prob-
ably provides another insight why can the conventional SD
obtain multiple time—frequency spectra. As expected, the
general purpose of SD is to obtain high-resolution or more
compact time—frequency spectrum. The physical meaning of
the time—frequency focusing property is strongly relevant to
sparsity. The mathematical expression of the physical mean-
ing can be approximated in one non-convex /,-norm mini-
mization (Chartrand 2007) as follows:

argmin [|ml|,, (5)

(j=1
between 0 and 1. Theoretically, minimizing the /, norm (i.e.,
the number of nonzero elements) can yield the sparsest solu-
tion (Candes et al. 2008). This is of little practical use, how-
ever, since minimizing the /, norm is a non-deterministic
polynomial (NP) hard problem. Mathematically, all situa-
tions are required to exhaust to find the optimal solution.
Especially for the large-scale problem, it is almost infeasible
to be solved (Xu et al. 2010). It is intuitive that when p is

KXN 1p C e
where ||m]||, = <Z |mj|p> , and the p value is limited
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close to 0, the solution to the lp (0<p<1) norm will be close
to that of the /, norm. Moreover, the /, norm penalizes large
coefficients smaller, while penalizes small coefficients more

heavily, in contrast to the typical /; norm||m||, = Z{(XN

— ).
Therefore, the /, norm can produce a sparser solu{i(;n tha{n
the typical /; norm (Chartrand 2007). On the whole, under
the premise of satisfying the conventional SD, we hope the
time—frequency spectrum is sparse, that is, to say the resolu-
tion of both time—frequency amplitude spectrum and phase
spectrum is high. Consequently, Eq. (5) is imposed on
Eq. (4) to obtain an optimal sparse time—frequency spectrum
by solving the following function:

m = arg nleiln lm]|, subjectto Gm =s. ©6)

In general, the above Eq. (6) can be solved by transforming
it into an [, (or hyper-Laplacians) regularization problem as
follows:

/1
m=argn}rlln(EHGm—SH%+/1||m||p>, )

where ||Gm — S||§ represents the non-stationary data misfit,
and A represents a regularization parameter balancing the
sparsity desired in the resulting time—frequency spectrum
and the non-stationary data misfit. If p=1, Eq. (7) is equiva-
lent to the conventional ISD in the lasso (Tibshirani 2011)
form. Therefore, the conventional ISD can be regarded as a
special case of MISD in this way.

Adopting the basic gradient idea to the above equation
leads to a following iterative scheme:

. 1 2
m,; = arg min { 3llm = [m, + 56" (s = Gm )] [ + 21m, }
®)

where >0 is an appropriate step size that depends on the
maximum eigenvalue of GG or the Lipschitz constant
(Beck and Teboulle 2009), m,, represents the solution at the
uth iteration, and [-]" represents the complex conjugate.

Equation (8) can be effectively solved by using a general-
ized iterated shrinkage algorithm (Zuo et al. 2013), where
each iteration involves relatively cheap matrix—vector multi-
plication followed by a generalized shrinkage/soft-threshold
step and a fast iterative strategy (Beck and Teboulle 2009).
The main iteration expressions are as follows:

-

m,,, = T]?ST [y, + BG"(s — Gy,). )|

y,=m, + u” (mu - mu—l)
yu+l
< b
L+ 4/1+4y2 ©)
Yut1 = 2

7, = [24(1 —p)]ff’ + Ap[24(1 —p)]%
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where TpGST is the generalized shrinkage operator (Zuo et al.
2013), y,, is a clever update of the model estimate consider-
ing a very specific linear combination of the two previous
updates that can play an important role in accelerating con-
vergence (Beck and Teboulle 2009), y is usually initialized to
1, and 7, is the threshold related to both 4 and p values (She
2009). When p=1, 7, =/, i.e., the typical threshold corre-
sponds to the /; norm. The matrix—vector multiplication Gy,
can be regarded as the forward modeling from the high-
dimension time—frequency domain to the low-dimension
data domain, whereas G/(s — Gy,) can be understood as the
adjoint operator of data residual (i.e., the difference between
the observed non-stationary data and the calculated data)
from the data domain to the time—frequency domain. These
both matrix—vector multiplications are similar to Egs. (3)
and (4), and thus can be implemented quickly by using the
fast Fourier transform.

After iteratively solving the optimal m, we can obtain
the corresponding time—frequency spectrum. Although both
the sparsity of time—frequency spectrum and how to get the
sparse time—frequency spectrum are meaningful, it is not
unimportant to make full use of the sparse time—frequency
spectrum. Moreover, it is helpful for seismic interpretation
that the sparse time—frequency spectrum is applied reason-
ably. In this paper, we use the 4D sparse time—frequency
spectrum to identify close geological anomalies at the fre-
quency along a horizon or those along the time direction.
We also emphasize that the horizon magnitude spectra at
the predominant frequencies can present the less number of
geological structures due to the sparsity constraint, and thus
improving the spatial resolution of horizons and reducing
false horizon-associated geological structures.

3 Examples

In this section, a 3D synthetic dataset with an area of
100 km? involving single-stage thin sand bodies of three
close dominant frequencies as well as the other 3D non-
stationary synthetic dataset with the same area involving
two-stage close sand bodies along the time direction are
designed to test the performances of MISD. These two syn-
thetic examples are adopted to focus on illustrating that the
4D spectral results obtained by using MISD can favorably
identify close geological bodies with different spatial distri-
butions, as well as showing its advantages over CWT and
conventional ISD. Furthermore, a 3D real dataset with an
area of approximately 230 km? from the Northwest China is
used to test its application potential for detecting channels
and the karst slope fracture zone in the deep target reser-
voir. It will be emphasized for these three 3D data examples
that MISD-based spectral results of horizons present the
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minimum number of geological structures than CWT-based
and ISD-based those, and thus making seismic structural
interpretation clear. For the three examples, MISD adopts
the same p value of 0.5 and the total iteration number of 100.
For each trial, ISD and MISD adopt the same algorithm flow
and the wavelet library except for different p values.

3.1 3D synthetic data example

In order to clarify the ability of MISD to identify geological
bodies with different spatial distributions and close domi-
nant frequencies, we design a single-stage thin sand layer
with a time range of 160 ms to 170 ms, which consists of one
meandering channel complex and two alluvial fan structures.
Then, a 3D seismic data cube with a size of 201 Inlines x 201
Crosslines X 300 time samples is synthesized by using three
zero-phase Ricker wavelets with dominant frequencies of
25 Hz, 30 Hz and 35 Hz for three sand bodies from North-
west to Southeast, respectively. For the model, the space
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intervals along both Inline (North—South) and Crossline
(East—West) directions are 50 m.

Figure 1 shows the comparisons among CWT-, ISD- and
MISD-based spectral amplitude slices at three close frequen-
cies and 165 ms. It can be seen from Fig. 1a—c that no matter
in 25-Hz, 30-Hz or 35-Hz CWT-based spectral amplitude
slices, both channel complex and alluvial fan structures
exist. In other words, CWT cannot distinguish these geologi-
cal anomalies located at different spatial locations by using
spectral amplitude attributes. It suggests that the frequency
focus of CWT is poor at both relatively low frequency and
relatively high frequency, as well as the frequency leakage
is serious. It can be observed that the 25-Hz ISD-based
spectral amplitude slice (Fig. 1d) shows only the Northwest
alluvial fan, but both 30-Hz and 35-Hz ISD-based spec-
tral amplitude slices (Fig. le, f) indicate the same channel
complex and Southeast alluvial fan together. It means that
although the frequency resolution of ISD has been improved
at the relatively low frequency, it is low at middle and high
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Fig. 1 Comparisons among spectral amplitude slices at 25 Hz (the left column), 30 Hz (the middle column) and 35 Hz (the right column)
obtained by using CWT (the top row), ISD (the middle row) and MISD (the bottom row) for single-stage thin sand bodies with increasing domi-
nant frequencies from Northwest to Southeast. Only MISD can indicate three 10-ms time thickness sand bodies with the true spatial distribution
characteristics separately by using spectral amplitude slices at three close frequencies
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frequencies. As expected, MISD can image all sand bodies
with the true spatial distribution characteristics separately
by using spectral amplitude slices at three corresponding
close dominant frequencies, as shown in Fig. 1g—i. The
above comparisons demonstrate that the sparsity constraint
represented by using an /, norm with a p value of 0.5 plays
a role in obtaining accurate spectral segmentation, so the
MISD-based spectral amplitude attribute gets rid of the fre-
quency mixture issue.

In order to test the ability of MISD to identify geologi-
cal bodies with different spatial distributions and close time
locations, we design a 3D synthetic data set with a size of
201 Inlines X201 Crosslines X 300 time samples. The shal-
low upper layer with the top interface of 100 ms and the bot-
tom interface of 120 ms, mainly consists of one meandering
channel complex and two alluvial fan structures. The deep
lower layer consists of one distributary channel complex and
one alluvial fan structure, with a time range of 160 ms to
180 ms. Then, a 3D seismic data cube with frequency attenu-
ation is synthesized by using two zero-phase Ricker wave-
lets with dominant frequencies of 40 Hz and 20 Hz for the
shallow single-stage sand bodies and the deep single-stage
sand bodies. Figure 2a, b shows the lateral distributions of
the upper-layer and lower-layer sand bodies with the space
intervals of 50 m along both Inline and Crossline directions.
It can be observed that all five sand bodies share different
lateral distributions. Figure 2c is the reflection coefficient
corresponding to one common depth point (CDP) involving
both upper-layer and lower-layer sand bodies.

It is difficult to distinguish the two-stage sand bodies
by using the original full-band amplitude slices, which are
complicated by both the time-variant wavelets and thin-bed
interference related to the shallow single-stage sand bod-
ies and the deep single-stage sand bodies. Time—frequency
analysis is an effective way to characterize full-band non-
stationary signals by decomposing a series of frequencies.

Inline

a b
@ 1 50 100 150 200 () 1
1 1

50 50

100 100

Crossline
Crossline

150 150

200

Figure 3a—f shows 40-Hz isofrequency magnitude slices at
125 ms and 131 ms, which are obtained by using CWT,
ISD and MISD. It can be seen that CWT (Fig. 3a, b) has the
strongest interference pattern with the imprints of all five
sand bodies overlapped together. Although ISD can image
three shallow sand bodies, there are some shadows of the
deep sand bodies (indicated by the red arrows in Fig. 3c),
and a part of the deep sand bodies which is overlapped with
Fig. 3c can also be seen in Fig. 3d. It can be found that the
overlapping areas correspond to the deep geological bodies
of 20 Hz. In other words, 20-Hz deep single-stage sand bod-
ies appear in 40-Hz isofrequency magnitude slices of shal-
low horizons, since the interference changes the frequency
components. Therefore, the isofrequency magnitude slice
is still the superposition of different frequency components,
which is not easy to interpret relatively close geological
bodies. That is to say, the 40-Hz ISD-based isofrequency
magnitude slice does not only contain the geological bodies
of 40 Hz, but also the geological structures of other fre-
quencies. However, the MISD-based spectral amplitude slice
at 125 ms (Fig. 3e) indicates only three sand bodies in the
upper layer, which reflects the real distribution character-
istics of the upper layer. Moreover, there are no obvious
imprints of 20-Hz deep single-stage sand bodies even at a
relatively deep slice, as shown in Fig. 3f.

Figure 4 shows the comparisons among the 20-Hz spec-
tral amplitude slices obtained by using different spectral
decomposition methods. The CWT-based results (Fig. 4a,
b) show that the two layers interfere together and cannot
be identified separately. Although the ISD-based spec-
tral amplitude attribute at a relatively shallow horizon
slice does not image any part of 20-Hz deep sand bodies,
40-Hz shallow sand bodies are clearly appear in the shal-
low spectral amplitude slice, as shown in Fig. 4c. Moreo-
ver, the deep ISD-based spectral amplitude slice visually
presents geometry of two 20-Hz deep sand bodies well,
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Fig.2 The lateral distributions of a the shallow upper and b the deep lower single-stage sand bodies, as well as ¢ the reflection coefficient at a
certain common depth point (CDP) involving two-stage sand bodies. The upper layer with a time range of 100120 ms consists of one meander-
ing channel complex and two alluvial fan structures with the dominant frequency of 40 Hz. The lower layer with a time range of 160-180 ms
consists of one distributary channel complex and one alluvial fan structure with the dominant frequency of 20 Hz
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Fig.3 Comparisons among 40-Hz spectral amplitude slices obtained by using CWT at a 125 ms and b 131 ms, ISD at ¢ 125 ms and d 131 ms,
as well as MISD at e 125 ms and f 131 ms. The MISD-based spectral amplitude slice at 125 ms images only three shallow single-stage sand bod-
ies with the true distribution characteristics, and there are no any imprints of 20-Hz deep single-stage sand bodies even at a relatively deep slice

however, there are clear spectral amplitude imprints of
40-Hz shallow sand bodies at the superimposition loca-
tions of two stage sand bodies, as indicated by the red
arrows in Fig. 4d. It is mainly because the overlapping
parts interfere with each other to change the frequency
components. Nevertheless, as expected, MISD does not

image any structures of two-stage sand bodies in the shal-
low spectral amplitude slice (Fig. 4e), while can clarify
the distributions of two deep sand bodies perfectly in the
deep spectral amplitude slice (Fig. 4f). The results in both
Figs. 3 and 4 suggest that MISD can yield a 4D spectrum
with higher time—frequency resolution than CWT and ISD,
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Fig.4 Comparisons among 20-Hz spectral amplitude slices obtained by using CWT at a 118 ms and b 158 ms, ISD at ¢ 118 ms and d 158 ms,
as well as MISD at e 118 ms and f 158 ms. The red arrow denote the overlapping parts of two-stage sand bodies. The MISD-based spectral
amplitude slice at 118 ms does not include any structures of two-stage sand bodies, and the deep spectral amplitude slice can indicate two deep

sand bodies well

as well as can favorably image two-stage geological bod-
ies separately at different spectral amplitude slices. These
advantages should mainly attribute to the use of the spar-
sity constraint represented by using an [, norm with a p
value of 0.5.
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To make an intuitive insight that MISD has a higher
time—frequency resolution, we extract three seismic traces
from the 3D non-stationary synthetic data, which are related
to only one upper geological body, only one lower geological
body, and both upper and lower geological bodies, as shown
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in Figs. 5a, 6a and 7a. The other subfigures in Figs. 5, 6 and
7 display the time—frequency magnitude spectra obtained
by using CWT, ISD and MISD, respectively. It can be seen
that the first vertical white line on the left (20 Hz) of CWT
(Fig. 5b) passes through the 40-Hz shallow energy cluster.
Although ISD is superior to the CWT method (Fig. 5c), the
first vertical white line passes through the boundaries of
the 40-Hz energy cluster. It can be clearly observed that the
left white line of MISD does not pass through the 40-Hz
energy cluster, as indicated in Fig. 5d. In Fig. 6, the observed
phenomena for the right white lines (40 Hz) are similar to
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1S 1S
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Fig. 5. The right vertical white line of MISD not only does
not pass through the 20-Hz deep energy cluster, but also
is far away, suggesting that MISD has a higher frequency
resolution. Figures 5 and 6 show that both CWT and ISD
suffer from strong frequency mixture issue, because of the
poor time—frequency focusing property. One can see from
Fig. 7b—d that the upper and lower layers of CWT and ISD
are interfered together, and CWT is the most serious, while
the upper and lower layers of MISD are separate. The upper
and lower layers interfered together will affect the frequency
components of local signals, especially for the deep.
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0 20 40 60 80 0 20 40 60 80

Time, ms
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Fig.5 An original seismic trace a including the reflection of only the upper sand layer extracted from 3D synthetic data, as well as comparisons
among time—frequency amplitude spectra obtained by using b CWT, ¢ ISD and d MISD. The two vertical white lines correspond to 20 Hz and
40 Hz, respectively. The left 20-Hz white line in only the MISD-based time—frequency amplitude spectrum does not pass through the 40-Hz
energy cluster, suggesting that MISD has a highest frequency resolution at the high frequency
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Fig.6 An original seismic trace a including the reflection of only the lower sand layer extracted from 3D synthetic data, as well as comparisons
among time—frequency amplitude spectra obtained by using b CWT, ¢ ISD and d MISD. The two vertical white lines correspond to 20 Hz and
40 Hz, respectively. The right 40-Hz white line in the MISD-based time—frequency amplitude spectrum not only does not pass through the
20-Hz energy cluster, but also is farthest away, meaning that MISD has a highest frequency resolution at the low frequency

@ Springer



Petroleum Science

@) Amplitude (b)

-2 0 2 0 20 40 60 80

Frequency, Hz

50 1

100 +

150

Time, ms
Time, ms

200 -

250 -

300

Frequency, Hz Frequency, Hz

0 20 40 60 80 0 20 40 60 80

Time, ms
Time, ms

Fig.7 An original seismic trace a including the reflection of both the upper and lower sand layers, as well as comparisons among time—fre-
quency amplitude spectra obtained by using b CWT, ¢ ISD and d MISD. The two vertical white lines correspond to 20 Hz and 40 Hz, respec-
tively. MISD can yield a more compact spectrum for broadband and non-stationary signal analysis, which contributes to detect the distributions

of close geological anomalies

To further explain that MISD has a higher time resolu-
tion, we extract 40-Hz frequency components as denoted
in the right white lines of Fig. 7b—d, as shown in Fig. 8a—c.
It is obvious that the leakage at 40-Hz frequency compo-
nents obtained via CWT is the most serious. Although the
time—frequency resolution of ISD has been improved, there
is still leakage, which affects the structure interpretation. It
is why a little leak of ISD has an effect on the spectral ampli-
tude slice that cannot be ignored. However, MISD present
only 40-Hz shallow sand-layer associated spectral compo-
nents, meaning that it does not suffer from the frequency
leakage. Moreover, the spectral magnitudes of both CWT
and ISD are not accurate and focused, as indicated by the
black ellipses in Fig. 8a, b, whereas the MISD-based result
(Fig. 8c) is as perfect as expected. Similarly, we extract
20-Hz frequency components from Fig. 7b—d, as shown in
Fig. 9a—c. The results corresponding to CWT and ISD still
have leakage, but MISD can only show the 20-Hz deep sand-
layer associated spectral components. Moreover, the width
(the red arrow) is the narrowest in contrast to CWT and
ISD, indicating that MISD has a highest time resolution. In
conclusion, MISD has a highest time—frequency resolution
and the best energy concentration, which provides a poten-
tial accurate way for seismic data interpreters to analyze
seismic signals.

3.2 3D field data example
A 3D migrated field dataset from the Northwest China with
a size of 594 Inlines X 594 Crosslines X251 time samples

is utilized to test the applicability of MISD. The research
region covers an area of approximately 230 km?, and the

@ Springer

target reservoir is located at an average depth of approxi-
mately 5 km. A seismic reflection profile extracted from
the processed data volume is displayed in Fig. 10a, where
the lateral black line denotes the interpreted horizon for the
top layer of the target reservoir. It can be clearly seen that
there exist strong beadlike reflections near and below the
interpreted horizon. Figure 10b shows an original full-band
seismic amplitude slice of the horizon corresponding to the
lateral black line in Fig. 10a. Due to the obvious difference
between the high-value amplitude and the surrounding low-
value amplitude, several channel-like structures are visible,
but their overall outlines are not clear enough. In addition,
there is a large area of high-amplitude anomaly in the South,
which is demonstrated to be associated with a karst slope
fracture. As the amplitude spectrum of seismic data is shown
in Fig. 10c, the band width of data is narrow, the frequency
corresponding to a global maximum amplitude is approxi-
mately 27 Hz, and the frequency corresponding to a locally
maximum amplitude is approximately 17 Hz.

Figure 11 displays the corresponding slices of hori-
zon through 17-Hz and 25-Hz spectral amplitude vol-
umes extracted from 4D magnitude volumes, which are
obtained by using CWT, ISD and MISD. Figure 11a, b
displays channels and karst features, which cannot be
separated at two close frequencies. These both CWT-
based spectral amplitude slices do not provide each other
with additional information. In contrast, there is relatively
large difference between 17- and 25-Hz spectral ampli-
tude slices for ISD, as shown in Fig. 11c, d. It can be
observed that there are two low-frequency high-ampli-
tude channels on the east side of the middle clearly and a
large area of high-frequency high-amplitude anomaly in
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Fig.8 Comparisons among the 40-Hz spectral amplitude components
(the right white lines in Fig. 7b—d) of different time—frequency results
obtained by using a CWT, b ISD and ¢ MISD. Compared with CWT
and ISD, MISD can solely show the 40-Hz frequency components
related to the shallow sand layer, and only the amplitude of MISD is
preserved well and most focused, as indicated by the black ellipses.
Moreover, MISD has a higher time resolution than CWT and ISD,
suggesting that MISD has the highest time resolution at the high fre-
quency

the South. However, only the 17-Hz spectral amplitude
slice of MISD (Fig. 11e) clearly delineates channels in
the middle, and especially highlights narrow channels in
the East (denoted in a red ellipse), which cannot be easily
interpreted in the original amplitude slice and Fig. 11a—d.
Moreover, the 25-Hz spectral amplitude slice (Fig. 11f)
is obviously different from 17-Hz one (Fig. 11e), and
the high-frequency spectrum mainly images the karst
(denoted in a black rectangle) and relatively low-ampli-
tude channels in the Southeast. In conclusion, compared
with ISD and CWT, MISD has a highest time—frequency
resolution and leads to a high spatial resolution to better
identify different geological bodies.
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Fig.9 Comparisons among the 20-Hz spectral amplitude components
(the left white line in Fig. 7b—d) of different time—frequency results
obtained by using a CWT, b ISD and ¢ MISD. Compared with CWT
and ISD, MISD can solely show the 20-Hz frequency components
related to the deep sand layer, and the time extension width (the red
arrows) corresponding to the deep sand layer is the narrowest, sug-
gesting that MISD has the highest time resolution at the low fre-
quency

4 Discussion

The inverse SD imposes an additional constraint related to
the time—frequency focusing or time—frequency spectrum
sparsity on the data misfit derived from the inverse WT, in
contrast to CWT. Therefore, the inversion-based time—fre-
quency spectral results are improved greatly, as demon-
strated in our examples. In this paper, both CWT and ISD
using a typical /; norm can be understood as a special case of
MISD. When the total iteration number is 1 and the regulari-
zation parameter is 0, the MISD-based result is equivalent to
the CWT-based one. When p=1, MISD can be derived to be
the same as ISD using a typical /; norm. In this way, these
three spectral decomposition methods can be unified in the
framework of MISD. Due to only one iteration, CWT is the
fastest. However, the CWT-based time—frequency resolution
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Fig.10 The 3D real data example. a An extracted seismic profile
through Crossline 420, b the amplitude slice of a horizon, and ¢ the
amplitude spectrum of seismic data. The black line in a denotes the
interpreted horizon for the top layer of the target reservoir. Seismic
full-band amplitude slice of the horizon indicates the existence of
channels and a karst slope fracture in the target reservoir vaguely

is the lowest, since there is no any constraint on the resulting
time—frequency spectrum. For the same algorithm flow and
parameters except for different p values, MISD with a typical
p value of 0.5 can yield the higher time—frequency resolution
than ISD, mainly because larger thresholds are adopted to
make the updated time—frequency spectrum sparser within
a limited number of iterations. Consequently, MISD can
obtain the highest time—frequency resolution and the most
flexible.

@ Springer

The MISD method can be extended to decompose non-
Gaussian noisy seismic data, but noise in this paper should
be random and satisfy the Gaussian distribution. Compared
with CWT and ISD, MISD has more parameters to determine,
mainly including the p value and the regularization parameter.
By testing different p values, and considering some theoretical
developments (e.g., Xu et al. 2010), it is feasible to take 0.5
for p in our examples. Similar to the p value, the regulariza-
tion parameter can also affect the sparsity of spectral results.
Generally, the larger the regularization value is, the sparser
the resulting time—frequency spectrum is, but there is a larger
risk of losing the weak amplitude reflection. In this paper, the
selection of the regularization parameter is mainly based on
the integrity and clarity of geological bodies in the spectral
amplitude slice of horizon as a quality-control standard. How
to pick a reasonable p and the regularization parameter adap-
tively (e.g., Li et al. 2019) is also worth studying in the future.

Compared with CWT, MISD is time-consuming, since a
large-scale inverse problem is required to solve, but MISD
brings a potential overwhelming advantage in identifying
relatively close geological anomalies at the frequency along a
horizon or those along the time direction. It is noticeable that
four main schemes are utilized to alleviate the time-consuming
issue of MISD greatly. (1) Only relatively cheap matrix—vec-
tor multiplication without any inverse operation of the large-
scale matrix is used to update the time—frequency spectrum.
(2) All matrix—vector multiplication operators in each iteration
are implemented fast by using the Fourier transform. (3) A
clever update in each iteration is employed to accelerate con-
vergence by considering a very specific linear combination
of two previous updates. (4) Parallel computing is adopted
to decompose different seismic traces at the same time. Due
to these schemes, MISD is not so expensive to process hun-
dreds of square kilometers of real data, and to further obtain
high-resolution time—frequency spectrum at the expense of
acceptable time.

We only use the time—frequency amplitude spectrum of
MISD in this paper. In fact, we can also readily obtain the cor-
responding time—frequency phase spectrum by implementing
the inverse tangent operation on the inverted optimal time—fre-
quency complex-value spectrum. Compared with the spectral
amplitude attribute, time—frequency phase spectrum should be
more sensitive to weak amplitude. This may provide some new
information. The time—frequency phase spectrum attribute can
be combined with time—frequency phase spectrum attribute to
reduce the uncertainty of seismic interpretation in the future.

5 Conclusions

In this paper, we use MISD based on an /,-norm constraint
of spectral coefficients to detect different geological bod-
ies, which can reach a higher energy concentration in the
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Fig. 11 Comparisons among the spectral amplitude slices obtained by using CWT at a 17-Hz and b 25-Hz, ISD at ¢ 17-Hz and d 25-Hz, as well
as MISD at e 17-Hz and f 25-Hz. There are significant differences between relatively low- and high-frequency spectral amplitude components of
MISD. The MISD-based low-frequency spectral amplitude slice delineates high-amplitude channels, especially for those narrow channels in the
East (the red ellipse), which cannot be indicated in the full-band amplitude slice, the CWT-based spectral slice and the ISD-based spectral slice,
but only high-frequency one clearly images the high-amplitude karst slope fracture zone (the black rectangle)

time—frequency plane than CWT and ISD. There are less
frequency mixing for spectral amplitude computed by using
MISD than those using CWT and ISD, which is helpful for
obtaining precise spectral amplitude, even when both the

time variation of wavelet and the interference of thin beds
complicate the time—frequency spectrum. The 4D spec-
tral amplitude obtained by using MISD can be utilized to
interpret channels, karst caves, faults and alluvial fans of
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horizons better than the original broadband data, CWT and
ISD, as demonstrated in both 3D synthetic data and 3D field
data examples. Furthermore, the MISD-based isofrequency
horizon magnitude slice at the chosen dominant frequency
presents the less number of geological structures due to the
l,-norm sparsity promotion, and thus giving a high spatial
resolution to make seismic interpretation easier. MISD and
the coherence algorithm will be combined to implement fine
seismic interpretation in the future. The extension to quanti-
tative seismic interpretation is also the future plan.
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