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Abstract
Aerobic granular sludge technology has great potential for the treatment of petroleum refinery wastewater. However, strategies 
to shorten the granulation time and improvement the stability still need to be developed. In this work, biochar was prepared 
from waste petroleum activated sludge (biochar-WPS) and used in a sequencing batch reactor for the treatment of petroleum 
refinery wastewater. Biochar-WPS presented the surface area of 229.77 m2/g, pore volume of 0.28 cm3/g, H/C and O/C 
atomic ratios of 0.42 and 0.21, respectively. The porous structure and a high degree of hydrophilicity were found to facilitate 
microbial colonization and adhesion as well as particle aggregation. Application of biochar-WPS resulted in the formation 
of more substantial and stable aerobic granules (~ 66% of granules > 0.46 mm diameter) 15 days earlier compared with the 
control. The addition of biochar-WPS enhanced the average removal efficiency of chemical organic demand (~ 3%), oil (~ 4%) 
and total nitrogen (~ 10%) over the control. Increased microbial richness and diversity were observed within the formed 
granules and had an increased (~ 4%) proportion of denitrifying bacteria. These results indicate that an aerobic granulation 
mechanism using biochar-WPS is a feasible option for the treatment of petroleum refinery wastewater.
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1  Introduction

Crude oil refining results in the generation of large quanti-
ties of wastewater (Petroleum Refinery Wastewater, PRW), 
often with a complex chemical compositions and poor bio-
degradability (Kaiser 2017). PRW contains abundant organ-
ics substrates such as hydrocarbons, naphthenic acid and 

heterocyclic compounds as well as nitrogen-containing com-
pounds which are mainly removed through biological treat-
ment methods (Wang et al. 2016). The most common bio-
logical treatment processes utilize activated sludge (anoxic/
oxic process, anaerobic/anoxic/oxic process). These estab-
lished processes are generally straightforward in operation 
but limited by low biomass retention, inefficient efficiency 
and significant space.

Aerobic granular sludge (AGS) technology has been 
widely concerned in the treatment of industrial and munic-
ipal wastewaters (Rosman et al. 2013; Cetin et al. 2018). 
In comparison with conventional activated sludge, AGS 
exhibits enhanced settleability, higher biomass retention 
and improved resistance to shock loading of pollutants 
(Rosman et al. 2013). Our previous research has demon-
strated that AGS can be used for the treatment of PRW 
(Chen et al. 2019). However, the development of AGS 
requires long acclimation of glucose as co-substrate. Simi-
lar results were also found in the treatment of oil waste-
water. For example, granules were only observed after 
110 days operation during the treatment of palm oil mill 
wastewater (Gobi et al. 2011). Therefore, reducing the 
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start-up time is critical for further development and use 
of AGS technology for the treatment of refinery and other 
wastewaters.

According to the nuclei hypothesis, support materials can 
provide nuclei that facilitate bacteria adhesion and aggrega-
tion (Lettinga et al. 1980). Therefore, a variety of porous 
materials with rough surface area have been used in attempts 
to improve the granulation process. Heterogeneous solids 
such as crushed or intact granules, magnetic nanoparticles 
and granular activated carbon (GAC) have all been success-
fully applied in accelerating aerobic granulation (Liang et al. 
2017; Li et al. 2013; Pijuan et al. 2011; Zou et al. 2019).

Biochar, produced from pyrolysis of biomass has a 
microporous structure and has been widely used in soil 
remediation and wastewater treatments as an adsorbent, sup-
port matrix and catalyst carrier (Li et al. 2017; Taskin et al. 
2019; Shi et al. 2019; Dai et al. 2018; Zhang et al. 2018a). 
More attention has been paid to the conversion of biochars 
from waste activated sludge, acting as adsorbent, catalyst 
carrier and conductive materials to facilitating interspecies 
electron transfer due to their large specific surface area, high 
stability and electrical conductivity (Yang et al. 2018; Zhang 
et al. 2018a, b). For example, biochar prepared with petro-
leum waste-activated sludge (WPS) showed high catalytic 
efficiency as catalyst in catalytic ozonation of PRW (Chen 
et al. 2019). Wang et al. (2018) got successfully micro-/
mesoporous-enriched biochar adsorbents prepared from a 
mixture of petroleum-derived oily sludge and biomass. It 
clearly has application prospects for aerobic sludge granu-
lation due to the physico-chemical characteristics of large 
specific surface area, stable structure and low cost. It may 
expand the application of biochar and reduce/recycle the 
WPS, achieving the concept of “waste control by waste.” 
Biochars derived from different materials vary greatly in 
their physico-chemical properties, including surface chemis-
try, porosity and elemental composition. The characteristics 
of biochar-WPS, its potential to affect sludge granulation, 
and the mechanism involved should be investigated.

In the present research, following the “waste control 
by waste” concept, biochar derived from waste petroleum 
refinery sludge (biochar-WPS) was prepared and used for 
the treatment of refinery wastewater. The physico-chemical 
properties of biochar-WPS were analyzed, including pore 
structure, elemental composition and surface functional 
groups. The biochar-WPS was added into a sequencing 
batch reactor (SBR) as a support material for the treatment 
of PRW. Organic compound and nitrogen (NH4

+-N and 
TN) removal efficiencies, granule characteristics and the 
microbial communities that developed were determined to 
assess the influence of biochar-WPS on AGS formation and 
reactor performance. Furthermore, a possible mechanism 
for biochar-mediated aerobic granulation has been proposed 
based on our results.

2 � Materials and methods

2.1 � Biochar preparation and inoculated sludge

Waste petroleum-activated sludge was obtained from the 
Liaohe Petrochemical Wastewater Treatment Plant (Panjin, 
Liaoning, China). The biochar was obtained according to 
the methods described by Ming et al. (2020). Briefly, raw 
sludge was oven-dried and pyrolyzed at 700 °C for 3 h under 
N2 and then was immersed in HCl solution (w/w, 3%) for 
24 h. After washing with ultrapure water until a pH value 
of 7.0, the samples were oven-dried and screened using 100 
mesh and 200 mesh sieves. The prepared biochar was named 
biochar-WPS.

The seed sludge was obtained from a aeration tank at 
Jinxi Petrochemical Company Wastewater Treatment Plant 
(Huludao, Liaoning, China), with a mixed liquor suspended 
solids (MLSS) of 3000 mg/L, mixed liquor volatile sus-
pended solids (MLVSS) of 2300 mg/L and a sludge volume 
index (SVI30) of 125 mL/g, respectively.

2.2 � Petroleum refinery wastewater (PRW)

The PRW was prepared by dissolving oil obtained from a 
vacuum distillation unit into tap water using a homogenizer 
mixer (Mark II Model 2.5, Primix Corporation, Japan), 
mainly consisted of alkanes, aromatic compounds, phenols, 
alcohols, esters, organic acids and heterocyclic compounds. 
The PRW provided the sole carbon sources during the 
investigation. NH4Cl and KH2PO4 were added to maintain 
the ratios of chemical oxygen demand (COD): NH4

+-N: P 
around 100: 3–8: 1, and NaHCO3 was used to keep the pH 
in the range of 7.0–8.0. Trace elements were added into the 
PRW which was prepared according to Chen et al. (2019).

2.3 � Reactor configuration and operation

Two identical SBR reactors (R0, control; Rw, added with 
biochar-WPS) were employed, with a working volume of 
2 L (7.0 cm of internal diameter and 58.2 cm of height). 
Biochar-WPS was added into Rw with a concentration of 3% 
(v/v) (Chen et al. 2018). Air was supplied with an air pump 
(YTZ-312, Shandong, China) through the diffusers located 
in the reactor bottom (Fig. 1a), and the dissolved oxygen 
(DO) concentration was kept at 6.5–8.5 mg/L. The influ-
ent and effluent were controlled by two peristaltic pumps 
(BT300-2J, Baoding, China), with a volumetric exchange 
ratio of 50%. The overall system was controlled by a time 
controller (KWD-T02, Zhejiang, China).

The experimental period consisted of four phases: 
start-up and acclimation (days 1–42), load shocking 
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(days 43–62), recovery (day 63–76) and improvement 
(days 77–120). The operational conditions are shown in 
Fig. 1b. In the first phase, the influent oil concentration 
increased from 127.07 to 298.93 mg/L while the settling 
time decreased from 30 min (days 1–9) to 5 min (days 
10–15 day) and to 3 min (days 16–42). The reactors were 
operated with a cycle of 4.8 h for the first period. Dur-
ing the load shocking phase, a 4-h cycle was used instead 
of the 4.8-h cycle, and the organic loading rate (OLR) 
increased to 3.40–4.50 kg COD (m3/days)−1. In the recov-
ery phase, the 4.8-h cycle was reapplied again, and the 
settling time increased from 3 min (days 43–62) to 5 min 
over days 63–120. To improve denitrification within the 
system, an anoxic period was introduced, using an opera-
tional mode of alternate aeration/non-aeration in the fourth 
period. Further detailed operational conditions are shown 
in Table 1.
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Fig. 1   a Configuration of the sequencing batch reactor and b organic 
loading rate over the operational period
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2.4 � Analytical methods

COD and NH4
+-N were analyzed according to standard 

methods (APHA 2005). Total nitrogen (TN) was measured 
by a total organic carbon analyzer (TOC-LCPH, Shimadzu 
Corporation, Japan) equipped with a TN measuring detector. 
pH was detected using a pH meter (Mettler Toledo FE28, 
Switzerland). Oil concentrations in the influent and effluent 
were measured using an infrared oil meter (OIL 480, China). 
Particle size of AGS was investigated according to Laguna 
and Ouattara (1999).

Protein and polysaccharide were extracted using the 
methods described by Chen et al. (2019). Protein was deter-
mined according to the Bradford method (Bradford 1976) 
with bovine serum albumin as the standard. Polysaccharide 
content was measured according to Dubois et al. (1956) with 
glucose as the standard. The sum of protein and polysac-
charide was considered as extracellular polymeric substance 
(EPS).

The surface areas and porosity of biochar were deter-
mined using a specific surface and aperture analyzer (ASAP 
2020M, USA). The surface morphology and element compo-
sition of biochar were determined using a scanning electron 
microscope (SEM) (Quanta 200F, Netherlands), equipped 
with an energy-dispersive X-ray analyzer (FEI, Hillsboro, 
OR, USA). Element contents (C, H, O and N) of biochar 
were determined using an elemental analyzer (Vario EL, 
Elementar Analysen System GambH, Germany). The sur-
face functional groups on the biochar were determined using 
a FT-IR spectrometer (MAGNA-IR 560 ESP, USA).

2.5 � Microbial community analysis

The seed sludge (SS) and aerobic granules of R0 and Rw 
(A0, Aw) on day 120 were collected and sent to Major-
bio Company (Shanghai, China). The genomic DNA was 
extracted and sequenced using an Illumina MiSieq platform 
in Majorbio Company. The V4 region of 16S rDNA gene 
was PCR amplified using the 515FmodF (5′-GTG​YCA​
GCMGCC​GCG​GTAA-3′) and 806RmodR (5′-GGA​CTA​
CNVGGG​TWT​CTAAT-3′) primer pair. The PCR mixture 
components and amplification parameters were similar to 
those of Ming et al. (2020). Microbial community structure 
and diversity were analyzed on the free online platform of 
Majorbio I-Sanger Cloud Platform (www.i-sange​r.com).

3 � Results and discussion

3.1 � Characterization of biochar

The physiochemical properties of biochar-WPS were 
determined in order to evaluate its application potential in 

facilitating aerobic granulation during treatment of PRW. 
The SEM image revealed that the biochars had a rough and 
irregular surface area and a highly developed porous struc-
ture (Fig. 2a). The surface area (229.77 m2/g) and pore vol-
ume (0.28 cm3/g) (Table 2) were found to be significantly 
higher than other biochars produced from both municipal 
sewage sludge and wastewater sludge from coking (Chen 
et al. 2014a; Zhang et al. 2018a). This observed difference 
mostly arises from the higher oil content of the waste petro-
leum activated sludge, which is volatilized at high tempera-
tures, resulting in increased porosity. The porous structure 
accumulated organic substances, reducing the toxicity of 
PRW and increasing bacterial survival. As determined by 
EDX analysis, biochar-WPS was mostly composed of C, 
O, Si, and certain metals (Fig. 2a). Metals including Mg, 
Al, Ca, Fe and Zn were observed on the biochar surface. 
The presence of Mg, Ca and Fe could possibly stimulate 
EPS production which is beneficial for microbial surface 
attachment and would accelerate aerobic granulation (Saj-
jad and Kim 2015; Ren et al. 2018). Certain minerals and 
elements within biochar could also serve as nutrient sources 
and enhance microbial activity and biodegradation of avail-
able organic contaminants (Yuan et al. 2013; Ogbonnaya 
and Semple 2013).

The H/C atomic ratio (0.42) (Table 2) of biochar-WPS 
indicated a relatively high degree of carbonization and aro-
maticity, ensuring that polycyclic aromatic hydrocarbons 
strongly adsorbed through interactions with π-electrons 
(Zhang et al. 2018a; Kubicki 2006). The relatively high 
O/C and (O + N)/C atomic ratios of biochar-WPS (0.21 and 
0.27) suggested a higher degree of surface hydrophilicity 
and more polar groups (Zielinska et al. 2015). This is ben-
eficial for microbial adhesion and pollutant removal (Zhang 
et al. 2018a). The biochar-WPS also had a much higher C 
and N content (38.23% C and 2.76% N) when compared 
with comparable biochars derived from coking wastewater 
treatment sludge (18.09% C and 0.97% N) and municipal 
sewage sludge (16.92 ± 0.55% C, 0.95% ± 0.07 N) (Zhang 
et al. 2018a; Chen et al. 2014a).

FTIR spectroscopy of biochar-WPS is shown in Fig. 2b, 
indicating the existence of functional groups on the surface 
of biochar-WPS. The peak at 3450 cm−1 is strong and broad, 
which could be the hydroxyl groups originated from alcohols 
or carboxylic groups (Chen et al. 2015; Zhang et al. 2011a). 
The weak peak at 2918 cm−1 is attributable to the stretching 
of C–H bonds of aliphatic compounds. The peak intensity at 
wave numbers 1611 cm−1 and 1377 cm−1 corresponds to the 
stretching of C=C and C=O bonds in aromatic ring (Shen et al. 
2019; Zhang et al. 2018a). The peak intensity at wave numbers 
of 1062 cm−1, 795 cm−1, and 472 cm−1 results from the vibra-
tion absorption of Si–O–Si (Shi et al. 2019). The functional 
groups of C=O on the biochar surface possesses the abilities 
of pollutant adsorption improvement and electrons supplement 

http://www.i-sanger.com
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for the generation of reactive oxygen species (O2·−L
SEP) further 

accelerating degradation of organic compounds (Zhang et al. 
2018a). In addition, biochar can function as a source and sink 
for the movement of electrons to and from the environment, 
promoting direct interspecies electron transfer and accelerating 
the pollutants biodegradation (Chen et al. 2014b).

3.2 � Performances of reactors

3.2.1 � The impact of biochar‑WPS on organic compound 
removal

The influent COD concentration ranged between 430 and 
1500 mg/L (Fig.  3a). The accompanying OLR ranged 
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Fig. 2   a EDX and SEM images and b FTIR spectrums of biochar-WPS

Table 2   BET and elemental analysis of biochar

BET analysis Elemental analysis

C% 38.23
Surface area, m2/g 229.77 H% 1.34
Pore diameter, nm 4.84 O% 10.82

N% 2.76
Total pore volume, cm3/g 0.28 H/C 0.42

O/C 0.21
(O + N)/C 0.27
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between 1.1 kg COD (m3 days)−1 and 4.5 kg COD (m3 
days)−1 (Fig. 3b). Except for the period of loading shock, 
the rates of COD removal were stable in both R0 (92.84%) 
and Rw (95.73%). A decreased settling time (5 min to 
3 min) temporarily reduced COD removal rates in the R0 
reactor during the start-up and acclimation period. On 
day 43, an increase for OLR to 3.8 kg COD (m3 days)−1 
decreased the COD removal efficiency in R0 (64.08%), 
which required 3 days to recover (90.26%). COD removal 
efficiency was also reduced to a much lesser degree 
(86.52%) in the Rw reactor and rapidly recovered (94.91%) 
in 1 day. Increasing the OLR [4.50 kg COD (m3 days)−1] 
and influent COD (1500 mg/L) (Fig.  1b) resulted in a 

decline in COD removal for both R0 (70.83%) and Rw 
(71.47%). During the recovery period, the OLR reduced 
to below 2.0 kg COD (m3 days)−1, and the settling time 
increased to 5  min. Both R0 and Rw recovered their 
COD removal efficiencies up to 90%. The effects on COD 
removal for both R0 (93.09%) and Rw (97.44%) were neg-
ligible exposed to transient anoxic conditions. The corre-
sponding effluent COD concentrations were 43.48 mg/L 
(R0) and 16.76 mg/L (Rw).

A similar tendency was observed during oil removal as 
the COD in the influent was supplied entirely by the PRW 
(Fig. 3b). Average oil removal efficiency was 89.40% in R0 
and 93.36% in Rw, respectively.

0

20

40

60

80

100

 

 

C
O

D
 re

m
ov

al
, %

(a)

400

800

1200

1600

2000

C
O

D
 c

on
ce

nt
ra

tio
n,

 m
g/

L

0

20

40

60

80

100(b)

 

 

O
il 

re
m

ov
al

, %

100

200

300

400

500

O
il 

co
nc

en
tra

tio
n,

 m
g/

L

Start-up and acclimation Load shocking Recovery Improvement

0

20

40

60

80

100(c)

 

 

20

30

40

50

60

70

N
H

4+ -N
 c

on
ce

nt
ra

tio
n,

 m
g/

L

0 20 40 60 80 100 120
0

20

40

60

80

100(d)
 

 R0
 Rw 
 The influent

Time, d

0

20

40

60

80

TN
 c

on
ce

nt
ra

tio
n,

 m
g/

L

TN
 re

m
ov

al
, %

N
H

4+ -N
 re

m
ov

al
, %

Fig. 3   Influent concentrations of a COD, b Oil, c NH4
+-N and d TN and their removal efficiencies in R0 and Rw



Petroleum Science	

1 3

The biochar-WPS addition improved the COD and oil 
removal efficiencies as well as the capability of shock load-
ing resistant. Such enhanced performance was also reported 
by Zhang et al. (2017) who showed that the removal effi-
ciency of total organic carbon improved 6.28% using rice 
husk-biochars. The porous structure and rough surfaces of 
biochar could provide a favorable microenvironment for 
microbial community from adverse surroundings. Biochar 
could enrich bacterial abundance and enhance the aromat-
ics biodegradation (Kong et al. 2018; Qin et al. 2013). In 
addition, oxygen-containing groups [e.g., hydroxyl (O–H) 
and carbonyl (C=O) groups] on biochar surfaces can act as 
reactive sites, that are also beneficial for pollutant degrada-
tion (Zhang et al. 2018a).

3.2.2 � The impact of biochar‑WPS on nitrogen removal

The two reactors efficiently removed NH4
+-N (100%) over 

the operational period, although a fluctuation was observed 
during the anoxic exposure (Fig.  3c). In contrast, TN 
removal efficiencies were low. R0 and Rw only removed 
23% and 30% of the TN, respectively, over the first 76 days 
of operation (Fig. 3d). To determine the reason for the unfa-
vorable denitrification results, DO and COD concentrations 
were determined over a typical SBR cycle on the 75th day. 
The DO content was found to be high (6.5 mg/L) in both 
reactors. The COD concentration dropped rapidly within 
44 min, and over 90% of the COD was removed by 144 min. 
This suggests that both anoxic conditions and the carbon 
sources inhibited denitrification. To enhance the TN removal 
efficiency, anoxia (120 min without aeration) was introduced 
on the 77th day (Table 1). This improved TN removal in 
both R0 (40%) and Rw (50%). After the 90th day, the anoxic 
period was further increased (165 min) and enhanced the 
performance of the two reactors by an additional 20%. Fur-
thermore, when the OLR was further decreased to 1.1 kg 
COD (m3 days)−1 during the last 11 days of operation, the 
TN removal efficiencies increased to 80% (R0) and 90% 
(Rw). The effluent TN concentrations were 7.76 mg/L in 
R0 and 5.54 mg/L in Rw on an average.

Alkanes, olefins, arenes and heterocyclic nitrogen com-
pounds in PRW can inhibit both nitrifying and denitrify-
ing bacteria (Zhang et al. 2010). The addition of biochar 
improved TN removal efficiencies, which could be attributed 
to shelter and provision of an anoxic environment for the 
denitrifying bacteria.

3.2.3 � The impact of biochar‑WPS on sludge granulation

Seed sludge morphology was loose, irregularly shaped and 
black in color with particle diameters less than 0.076 mm. 
Small granules were visibly observed in Rw on the 4th day, 
but only minimally in R0 on the 8th day. A short settling 

time is a prerequisite for facilitating granulation, includ-
ing the development of microbiological and physiological 
changes which further accelerate microbial aggregation 
(Xiong and Liu 2012). As the settling times decreased 
(from 30 to 5 min), the sludge size increased gradually. 
After 15 days of operation, 65.55% of the sludge in Rw had 
diameters larger than 0.46 mm, compared with 33.82% in R0 
(Fig. 4). On the 16th day, the settling time decreased from 
5 to 3 min and greater numbers of granules were observed 
in both reactors. The granular sludge larger than 0.46 mm 
accounted for 53.8% of total granules in R0 and 79.6% in Rw 
on day 30. Successful aerobic granulation is achieved when 
50% of the total sludge possesses particle sizes > 0.34 mm 
(Bhunia and Ghangrekar 2006). Aerobic sludge granulation 
was accomplished within 15 days in Rw and 30 days in R0, 
respectively. Granules less than 0.25 mm in diameter were 
consistently observed in R0 but not in Rw. Particles larger 
than 2 mm in diameter were only formed in Rw. The inhibi-
tory effect of a complex influent on granular growth has also 
been observed in other studies (Zhang et al. 2011b; Chen 
et al. 2019). At the end of operation (day 120), granules 
(> 0.46 mm) in Rw accounted for 82.5% of the total which 
was 20% higher than that in R0.

The concentration of EPS in the sludge was determined 
(Fig. S1). EPS content significantly increased during aero-
bic granulation and reached a maximum for Rw [61.66 mg/
(g·VSS)] on day 15, whereas the maximum concentration 
for R0 [51.12 mg/(g·VSS)] was observed on day 30. These 
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results coincided with the observed granulation. It had been 
reported that EPS secretion occurs mostly aerobically and 
has a vital role in microbial aggregation, granular formation 
and structural stability (Nancharaiah and Reddy 2018).

3.2.4 � The impact of biochar‑WPS on microbial community

The richness and diversity of the microbial communities 
of seed sludge (SS) and AGS sampled in R0 and Rw (A0, 
Aw) on day 120 are represented by alpha diversity shown 
in Table 3. A total of 137,492 sequences having an aver-
age length of 273.06 bp were obtained. The coverage was 
higher than 99% indicated an adequate sequencing depth 
was performed.

Compared to granular sludge, the inoculum possessed a 
greater richness and diversity as indicated by the Chao index 
and the Shannon index. Decreased richness and diversity 
were due to the re-acclimation of the biological communities 
after exposure to the PRW. The Chao and Shannon indices 
of Aw were significantly higher when compared with A0, 
indicating that the addition of biochar-WPS was beneficial 
for community establishment. The biochar affects solution 
chemical activity and the ecotoxicity of organic compounds 
and also provide a favorable microenvironment (Ogbonnaya 
and Semple 2013).

The dominant phylum in the seed sludge was proteobacte-
ria (40.0%), followed by planctomycetes (11.0%), thaumar-
chaeota (10.6%) and actinobacteria (7.5%) (Fig. 5a). After a 
long-term operation within PRW, the microbial community 
changed. The most abundant phyla in A0 and Aw were pro-
teobacteria (78.1% and 73.0%) and actinobacteria (14.2% 
and 10.7%), which increased significantly compared to the 
seed sludge. Many proteobacteria and actinobacteria are 
implicated with the degradation of petroleum hydrocarbons 
(Liu et al. 2017b). Furthermore, many proteobacteria are 
known to secrete EPS, which could accelerate the adhesion 
of flocculent sludge (Liu et al. 2017a).

At the genus level, A0 and Aw had similar microbial 
compositions but that were significantly different from the 
seed sludge (Fig. 5b). The dominant genera in the seed 
sludge were uncultured archaeon clone HSZ-A-2 (14.5%), 
uncultured delta proteobacterium (11.7%), uncultured 
bacterium clone 48b (7.1%) and Herminiimonas (3.5%), 
which were not present in A0 and Aw. Uncultured gamma 
proteobacterium (36.6% and 39.0%), mycobacterium 

(8.3% and 6.7%) and acinetobacter (8.1% and 5.3%) were 
the most abundant genera in A0 and Aw, known to be 
capable of degrading oil (Militon et al. 2010; Yang et al. 
2015). These results indicated the successful enrichment 
of microorganisms with the ability to degrade petroleum 
during the treatment of PRW. In addition, Denitratisoma 
and Sulfuritalea, that are related to denitrifiers, were more 
abundant in Aw (4.6% and 1.5%) than A0 (1.8% and 0.7%), 
which may be the reason for better TN removal in Rw (Du 
et al. 2017). In conclusion, biochar-WPS addition had less 
effect on microbial community composition.

Table 3   Results of alpha diversity analysis

Sample Sources Shannon Chao Coverage

SS Seed sludge 4.88 587.65 0.99
A0 R0 3.57 470.50 0.99
Aw Rw 3.69 493.55 0.99

Others AKYG587 Pir4_lineage

Amphiplicatus Hyphomicrobium

Herminiimonas Opitutus

Uncultured bacterium clone 48b Alphaproteobacteria bacterium YG14

Sulfuritalea

Uncultured delta proteobacterium

Uncultured bacterium clone 48b

Woodsholea Zavarzinia

Leptospira illini

Immundisolibacter cernigliae strain TR3.2

Alicycliphilus denitrificans strain B4

Denitratisoma Gordonia
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Mycobacterium

Uncultured gamma proteobacterium
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Fig. 5   Microbial communities of seed sludge and granules in R0 and 
Rw on day 120 (SS: seed sludge; A0: granules collected from R0; 
Aw: granules collected from Rw)
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3.2.5 � Mechanism of rapid aerobic granulation 
with biochar‑WPS

Biochar-WPS has abundant pores and a correspondingly 
high surface area, which can contribute to initial suc-
cessful adhesion of microorganisms. The porous struc-
ture further shelters microaggregates from adverse envi-
ronmental conditions during the early stages of granule 
development. Cationic metal ions located on the surface 
of biochar accelerated microbial adhesion through interac-
tions with negatively charged cellular components and can 
promote EPS secretion (Adav et al. 2008; Nancharaiah and 
Reddy 2018). EPS secreted by the microorganisms shorten 
granule formation time by functioning as bridges between 
bacteria, metal species and other particles (Liu et al. 2004; 
Adav et al. 2008).

A possible mechanism for biochar-WPS mediated aero-
bic granulation is presented in Fig. 6. The microorgan-
isms first adhere and aggregate with biochar-WPS due 
to its physicochemical properties. The toxicity of PRW, 
external hydraulic shear forces and metals present on the 
surfaces of biochar-WPS facilitate EPS production, form-
ing bridges between bacterial cells and other particulates 
(Nancharaiah and Reddy 2018). The EPS accumulated 
around bacterial cells could modify the physico-chemical 
characteristics of the cellular surface components, such 
as charge and hydrophobicity, further increasing micro-
bial aggregation (Adav et al. 2008; Liu et al. 2004; Nan-
charaiah and Reddy 2018). In addition, the sticky sub-
stances (such as asphaltenes) in oil also bind and bridge 
with the microorganisms. Finally, aggregates gradually 
increase in size and become the precursors for aerobic 
granule formation. Physical friction induced by hydrau-
lic shear forces contributes to shape the smooth granular 

sludge and mature granular sludge is finally formed (Adav 
et al. 2008; Nancharaiah and Reddy 2018).

4 � Conclusions

Biochar prepared with waste petroleum activated sludge pos-
sessed a porous structure with high surface area and hav-
ing abundant metals and functional chemical groups. Such 
properties enabled rapid aerobic granular formation and 
facilitated the biodegradation of organic compounds. The 
presence of biochar-WPS enlarged granule sizes, improved 
reactor performance and resistance to OLR shock loading. 
In addition, favorable microbial communities developed 
along with an increased abundance of petroleum degraders 
and denitrifiers. These results suggested biochar-WPS can 
provide an efficient, eco-friendly and cost-effective way for 
rapid granulation in SBR for the treatment of PRW.
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