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Abstract

Encouraged by the wide spectrum of novel applications of gas hydrates, e.g., energy recovery, gas separation, gas storage,
gas transportation, water desalination, and hydrogen hydrate as a green energy resource, as well as CO, capturing, many
scientists have focused their attention on investigating this important phenomenon. Of course, from an engineering viewpoint,
the mathematical modeling of gas hydrates is of paramount importance, as anticipation of gas hydrate stability conditions is
effective in the design and control of industrial processes. Overall, the thermodynamic modeling of gas hydrate can be tackled
as an equilibration of three phases, i.e., liquid, gas, and solid hydrate. The inseparable component in all hydrate systems,
water, is highly polar and non-ideal, necessitating the use of more advanced equation of states (EoSs) that take into account
more intermolecular forces for thermodynamic modeling of these systems. Motivated by the ever-increasing number of
publications on this topic, this study aims to review the application of associating EoSs for the thermodynamic modeling of
gas hydrates. Three most important hydrate-based models available in the literature including the van der Waals—Platteeuw
(vdW-P) model, Chen—Guo model, and Klauda—Sandler model coupled with CPA and SAFT EoSs were investigated and
compared with cubic EoSs. It was concluded that the CPA and SAFT EoSs gave very accurate results for hydrate systems as
they take into account the association interactions, which are very crucial in gas hydrate systems in which water, methanol,
glycols, and other types of associating compounds are available. Moreover, it was concluded that the CPA EoS is easier to
use than the SAFT-type EoSs and our suggestion for the gas hydrate systems is the CPA EoS.
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Abbreviations List of symbols
PR Peng—Robinson Al Free energy of an ideal gas
PT Patel-Teja Abs Free energy of a hard-sphere fluid relative to the
ANNs  Artificial neural networks ideal gas
ANFIS Adaptive neuro-fuzzy inference system Achain Free energy when chains are formed from hard
vdW-P  Van der Waals and Platteeuw spheres
PRSV2  Stryjek and Vera modification of Adisp Contributions to the free energy of dispersion
Peng—Robinson ABssoe Contributions to the free energy of association
BiMSA Binding mean spherical approximation P Total number density of molecules in solution
NRTL  Non-random two-liquid d; Hard sphere diameter of segment i
o;i Soft sphere diameter of segment i
£ Energy parameter
o Cross parameter between different segments
i Cross parameter between different segments
Edited by Xiu-Qiu Peng M, Number of associating sites
XAi Mole fraction of molecule i, not bonded at site
P4 Feridun Esmaeilzadeh A, in mixtures with other components
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p Total molar density of molecules in the solution

AAB; Associating strength

KAB Bonding volume

k’;.B Binary associating interaction parameter

T, Critical temperature

P, Critical pressure

P Pressure

Vv Specific volume

R Universal gas constant

T Temperature

P Pressure

w Acentric factor

F Fugacity

¢ Fugacity coefficient

v Molar volume

pMT Vapor pressure of water in empty hydrate lattice

pMT Fugacity coefficient of water in empty hydrate
lattice

vir Partial molar volume of water in the empty

hydrate lattice
v; Number of cages of type i per water molecule in
a unit hydrate cell

Y Fractional occupancy of the hydrate cavity i by
guest molecule type k
Mole fraction in the aqueous phase

Y Activity coefficient

xf;, Mole fraction of promoter in the aqueous phase

7p Activity coefficient of promoter in the aqueous
phase

Py Promoter vapor pressure

Subscripts and superscripts

W Water

L Liquid

H Hydrate phase
G Gas phase

1 Introduction
1.1 Gas hydrates

The framework of water molecules formed by hydrogen
bonds may cause the formation of vacant cavities or cages
in which small molecules (< 0.9 nm) like small paraffin,
CO,, H,S, etc. can be hold (“trapped”) and creates crystal-
line compounds resemble ice named as gas hydrates (Sarshar
et al. 2010c; Esmaeilzadeh 2006; Sun et al. 2005). To date,
more than 130 gas molecules are known to form hydrate.
Indeed, the stabilization of the gas hydrate depends on the
van der Waals intermolecular forces between the gas and
water molecules. Despite the ice, gas hydrates can be stable
at temperatures higher than 273.15 K (Talaghat et al. 2009b;

@ Springer

—o— Propane
Ethylene
10 CO:
Methane
—*— Hydrogen+Methane
8 4 —*—R14b
—4—R13
——R23
—m- R32

Pressure, MPa
(2]

0 T T T T
270 275 280 285 290 295

Temperature, K

Fig. 1 Phase diagram of pure methane (Sloan 1998), propane (Stro-
bel et al. 2009), ethylene (Ma et al. 2001), carbon dioxide (Sabil
et al. 2010b), mixture of hydrogen and methane hydrate (Zhang et al.
2000), and refrigerants (R14b, R13, R23, and R32) (Kubota et al.
1984; Akiya et al. 1999; Hashimoto et al. 2010; Liang et al. 2001)

Kvenvolden 1998; Milkov 2004; Taylor and Kwan 2004).
Originally, the word “clathrate” stems from the Greek word
“Khlatron” which means barrier (Chatti et al. 2005).

Based on previous publications, to compare hydrate sta-
bility regions for a variety of hydrate formers, as shown in
Fig. 1 the optimum conditions for hydrate formation are
investigated. As can be seen, the formation of hydrate is
more likely to occur at high pressures and low temperatures.
Actually, the left side of each line in Fig. 1 presents the
conditions in which the hydrate can be formed, an area with
high pressure and/or low temperature (Sloan 2003; Lee et al.
2012).

Figure 1 demonstrates that methane needs extremely
higher pressures to form hydrate with respect to propane.
Therefore, it can be concluded that according to the type
(size) of gust molecules, the nature of the guest molecules,
the pressure—temperature conditions, and the number of
water molecules involved in the cavities, three different
structures of gas hydrate are considered: structure I (sI),
structure II (sII), and structure H (sH) (Pauling and Marsh
1952; Claussen 1951; Ripmeester et al. 1987; Talaghat et al.
2009a). The detailed explanations of these structures can be
found in previous studies (Sloan 2003; Sloan 2005; Sloan
and Koh 2007).

1.2 Effect of inhibitors and promoters
Some problems are arising by hydrate formation, such as

obstacles in pipelines, waste of money, safety risks in oil
and gas production, transportation, and processing (Afzal
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et al. 2007; Mohammadi et al. 2009b, 2010; Sarshar et al.
2008, 2010c). Therefore, there is a considerable need in the
industry to prevent hydrate formation. Alongside various
hydrate inhibition methods like heating, pressure reduc-
tion (Esmaeilzadeh et al. 2011), and water removal, one of
the most useful and applicable ways is to apply gas hydrate
inhibitors (Sarshar et al. 2010a). Gas hydrate inhibitors
(GHISs) are classified into two big categories: thermodynamic
hydrate inhibitors (THIs) and low-dosage hydrate inhibitors
(LDHIs). THIs prevent hydrate formation by reducing the
activity of water in the aqueous system through intermo-
lecular interactions with water molecules (Mech et al. 2015;
Esmaeilzadeh and Fathikalajahi 2009). Some common THIs
are sodium chloride, magnesium chloride, methanol, eth-
ylene glycol, etc. (Mohammadi et al. 2009b; Mohammadi
and Richon 2010). While THIs affect the thermodynamic
conditions of hydrate formation (e.g., temperature and pres-
sure) and make the hydrate stability region smaller, LDHIs
influence the induction and nucleation stages by decreasing
the hydrate nucleation and growth rate through increasing
the gas hydrate formation induction time. Induction time is
the time interval between reaching the hydrate formation
condition and the formation of the hydrate. As a result, they
delay hydrate crystal agglomeration (Bakhtyari et al. 2018;
Moeini et al. 2017). During the past years, many polymer
chemicals like polyvinylpyrrolidone (PVP) and polyvinyl-
caprolactam (PVCap) have been investigated, among which
biodegradable and environmentally friendly ones are of
great importance (Daraboina et al. 2011; Kelland 2006;
Ohno et al. 2010; Al-Adel et al. 2008).

On the other hand, hydrate can be taken into account as
a useful phase in many applications (Sarshar et al. 2010b).
Indeed, it can be used in gas storage (Sun et al. 2003b;
Khokhar et al. 1998; Gudmundsson et al. 1994; Ohgaki
et al. 1996; Sun et al. 2003a; Lee et al. 2005; Veluswamy
and Linga 2013; Aliabadi et al. 2015), transmission (Sun
et al. 2003b), separation technology (Eslamimanesh et al.
2012b; Kamata et al. 2004; Arjmandi et al. 2007; Nagata
et al. 2009; Shiojiri et al. 2004; Tang et al. 2013), energy
resource (Collett 2002; Kvenvolden 1993; Makogon et al.
2007; Collett 2004; Chong et al. 2016), CO, capturing
(Kang and Lee 2000; Zhong et al. 2016; Spencer and Currier
2002; Duc et al. 2007; Dickens 2003; Ma et al. 2016; Babu
et al. 2016; Zhong et al. 2015; Yang et al. 2015; Sarshar
et al. 2009), and solving geohazard problems (Maslin et al.
2010; Kvenvolden 1999; Milkov et al. 2000; Ruppel et al.
2008; Yamamoto et al. 2015). As mentioned, the conditions
of hydrate formation are difficult (high pressure and low
temperature), and in practical applications, the conditions
need to be moderated (Eslamimanesh et al. 2012a). There-
fore, promoters appear to be significantly useful chemicals
moderating the formation conditions of hydrates (Papadimi-
triou et al. 2011; Illbeigi et al. 2011; Sloan Jr and Koh 2007;

Partoon and Javanmardi 2013; Shahnazar and Hasan 2014,
Sabil et al. 2010a; Aliabadi et al. 2015). Overall, one can
classify promoters into two essential classifications: ther-
modynamic and kinetic promoters. As the names suggest,
thermodynamic promoters affect the equilibrium conditions
of liquid water, hydrate, and vapor (Lw—H-V) and shift it to
a higher temperature and lower pressure like tetrahydrofuran
(THF), dimethyl cyclohexane, and cyclopentane; however,
kinetic promoters cause the hydrate formation to become
faster through accelerating the nucleation and growth steps
like biosurfactants (Sloan Jr and Koh 2007; Partoon and
Javanmardi 2013).

1.3 Equation of states for associating fluids

Simple molecules, either organic (e.g., toluene, methyl
chloride) or inorganic (O,, CO, N,, N,0, etc.), have a long
history of being thermodynamically modeled by many com-
monly used EoSs, namely Peng—Robinson (PR) (Peng and
Robinson 1976), Soave—Redlich—-Kwong (SRK) (Soave
1972), and Esmacilzadeh-Roshanfekr (ER) (Esmacilzadeh
and Roshanfekr 2006). These EoSs only take into account
the van der Waals attractions as well as weak electrostatic
forces, resulting from dipoles, quadruples, etc. The afore-
mentioned cubic EoSs have two parts: the attraction inter-
molecular force and the repulsion intermolecular force.

On the other hand, many real-world fluids have Columbic,
strong polar forces, along with forces together with chain
flexibility, induction forces, acid—base interactions, electro-
lyte solutions, etc. To deal with the associating compounds,
the term “chemical theory” has been coined, which means
the associating complexes are acted as unique new chemical
species. Taking into account the chemical equilibria between
the initial components and these complexes leads to new
EoSs, reflecting the effect of non-ideal structures of associat-
ing fluids (Miiller and Gubbins 2001). This idea is the foun-
dation of the development of several molecular-based EoSs
from statistical thermodynamics such as different versions
of statistical associating fluid theory (SAFT) (Gil-Villegas
et al. 1997; Tan et al. 2008; Economou 2002) and cubic
plus association (CPA) (Kontogeorgis et al. 1999, 20064, b).
The inevitable existence of water or alcohol-based hydrate
inhibitors in any hydrate system is a significant challenge to
model these systems using conventional EoSs, which neglect
any association interactions. Therefore, the application of
newly developed statistical EoSs has been becoming more
and more substantial for the thermodynamic modeling of
hydrate systems, which is the focus of this study to pro-
pose a suitable thermodynamic package for modeling of gas
hydrate equilibrium conditions.

@ Springer



Petroleum Science

1.4 Objective

Whether as a negative phenomenon or a useful application
in chemical processes, the thermodynamic modeling and
phase behavior of gas hydrate are a vital engineering neces-
sity. Indeed, the prediction of dissociation conditions of
the hydrate phase plays a major role in the design of indus-
trial applications regarding gas hydrate. This study aims to
address the statistical EoS application for the thermody-
namic modeling of gas hydrates and come to a conclusion
about the advantages and shortcomings of each approach.
Since a variety of models were presented to compute the
chemical potential of components in the solid and fluid
phases, adequate knowledge on the advantages and short-
comings of each model is of interest and significance. The
water vapor pressures at the hydrate equilibrium tempera-
tures (below 350 K) are much lower than the pure or mixed
gas vapor pressures. Therefore, the vapor phase primarily
consists of gas molecules. Hence, the fugacity of the vapor
phase can be simply computed using common cubic EoS
and mixing rules. However, the bottleneck of the hydrate
equilibrium conditions modeling is to computing the chemi-
cal potential or fugacity of the solid and liquid phases. The
objective of this work is to introduce several popular novel
models that are used for hydrate modeling of systems con-
taining associating compounds. Three important models are
reviewed for the hydrate phase, while for the fluid phases
the SAFT and CPA EoS along with the cubic EoSs are
discussed.

2 Thermodynamic modeling of gas hydrate

The basic deterministic idea to enhance a reliable ther-
modynamic model anticipating gas hydrate dissociation
conditions is the equality of the chemical potential of the
components in the three involved phases (i.e., hydrate, gas,
and fluid phases). Reviewing the previous publications, the
thermodynamic approaches of hydrate systems modeling are
categorized into three sections. The equality of the chemical
potential and the fugacity, as well as the type of the compo-
nent (water or other components), are the basis of catego-
rization. More details of the different approaches for gas
hydrate modeling can be found in the following subsections.

2.1 The van der Waals and Platteeuw (vdW-P) solid
solution theory

The most common and well-known model to calculate the
behavior of the hydrate phase is the van der Waals and Plat-
teeuw (vdW-P) (Van der Waals and Platteeuw 2007; Plat-
teeuw and Van der Waals 1959). This statistically based,
thermodynamic model is the starting point for many further
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types of research regarding the hydrate thermodynamic
model. In the original work, the equalization of the water
chemical potential in all the coexisting phases is considered:

ud (T, P) = u/'(T.P) = p(T.P) )
Since the vapor pressures of water in the hydrate formation
temperature ranges are very low, the contribution of water
in the vapor phase is neglected. The chemical potential of

water in the hydrate phase is calculated as follows:

No of cavities nc
pl =ub+RT ) 8mln<1—26mi> )
i=1

m=1

where 8,, and 6,;, respectively, denote the number of cages
of type “m” per water molecules in a hydrate unit cell and
the fractional occupancy of the hydrate cavity type “m” by
the guest molecule of type “i”. The latter is specified as fol-
lows (Sloan Jr and Koh 2007; Van der Waals and Platteeuw

2007):

“ (L)

_Culi

“ *99

where f; stands for the fugacity of the guest component “i
The parameter C,,; represents the Langmuir constant of com-
ponent “7” and simulates the occupation of the cavity by the
guest molecule like the ideal adsorption of gas molecules on

the solid surfaces and is formulated as follows:

R'—a
Az -W(r) 2
Z T/exp( kT )r dr “@

where R’ is the radius of the spherical cavity and W(r) speci-
fies the appropriate potential function for calculation of the
intermolecular forces between the gas and water molecules.
McKoy and Sinanoglu (1963) used the three-parameter
Kihara potential function and developed the formula for
calculation of W(r) to take into account all the interactions
between the gas molecule on the cavity and all the water
molecules on the cavity wall, which can be seen in the fol-

lowing equation:
11 4y
) w5 @

Coui(T) =

10
W(r) = 2Z¢ [R,l : (5

where

(O RS N T

Apart from the aforementioned equations, Parrish and
Prausnitz (1972) developed an empirical correlation for C,;
calculation. Their equation, which made the process of C,,
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calculation much easier, is valid for temperatures between
260 and 300 K. This equation can be shown by the follow-
ing equation:

Aii B i
Coni = 5 XP <7’"> (7

In Eq. (7), A,,; and B,,; are optimized constants, which can be
found in Parrish and Prausnitz (1972). They also improved
the vdW-P model by applying the fugacity of hydrate for-
mer instead of its partial pressure to take into account the
non-ideality of the vapor phase. It is worth mentioning
that the constants were found for most of the components
ranging from hydrocarbons to noble gases. Moreover, they
introduced a procedure to calculate the hydrate equilibrium
conditions for the gas mixtures.

Apart from the aforementioned equation, the water chem-
ical potential difference between the liquid/ice phase and

vacant lattice, A,uﬁ_L/ 1, is calculated based on the following
equation:
B-L/T A0 T p—L/I p—L/I
Ay, H, ARy, .
S _Zhw —/ - dT+/ AT (x,7)
RT, RT, RT? RT
T, 0

®)
In Eq. (8), Aptf,_L/ " denotes the chemical potential differ-
ence between the vacant lattice and liquid water or ice at
reference condition (101.325 kPa, 7). Ahfv_L/ "and Ava_L/ ’,
respectively, represent the volume and enthalpy difference
between vacant lattice and liquid water or ice. P is pressure,
and the term x,,y,, represents the activity coefficient of water
in the aqueous solution. Also, T} represents the temperature
at which ice appears and depends on the guest molecules.
Ahfv_L/ ! can be measured using the following equation:

T
AR = Ah3+/ (-38.12+0.141(T = T,))dT  (9)
Ty

Table 1 presents the previous studies on the gas hydrate
equilibrium modeling using the vd W—P model.

2.2 The Chen-Guo hydrate model

The Chen—Guo hydrate model is in accordance with a two-
stage mechanism: first, the formation of hydrate empty cages
via a quasi-chemical reaction and second, the adsorption
of some gases (with relatively small dimensions) into the
cavities, accounting for the non-stoichiometric hydrate prop-
erties. As opposed to the vdW-P thermodynamic model,
which considers the equality of water in the hydrate and fluid
phases, the Chen—Guo hydrate model balances the hydrate
former fugacity in the fluid phase and that in hydrate phase
as follows (Chen and Guo 1996):

f=r=f (10)
ﬁ:ﬁ.Hsz;H‘)(l— 0k> (1)
1

2=l (12)

a=
/12

13)

In Eq. (13), 4, and 4, denote the number of small cavities
per water molecule and the number of hydrate formers (salt
molecules) encaged in the basic hydrate (large cavities) per
water molecule, respectively. f; stands for the fugacity of
hydrate former “i” in the gas/liquid phase computed by an
equation of state, and x; stands for the mole fraction of gas
component “i” in the large cavities. 8, represents the frac-
tion of small voids occupied by the gas component. It is

formulated as:

g - G
T+ Y G

C, stands for the Langmuir constant, which represents the
interactions between the guest and host molecules, and in
the Chen—Guo hydrate model, the Antonie-type equation
was considered for it:

Yy
Cr = Xyexp T_7 (15)
k

Here, X;, Y,, and Z, represent the constants of component
“k,” which is optimized using the gas hydrate equilibrium
data and the values of them have been given in the literature
(Chen and Guo 1998).

The symbol fih’0 in Eq. (11) denotes the hydrate former
fugacity in an equilibrium state with the unfilled pure basic

(14)

hydrate “i,” manipulated as:
P -1
£ =f%CXP<ﬁ7>a$2 (16)
AV
B = TR (17)

In Eq. (16), a,, is the activity of water that can be calculated
using an appropriate relation for water activity coefficient.
It is worth mentioning that, in most cases without a thermo-
dynamic inhibitor or promoter in water, the activity of water
is assumed to be equal to unity and for the hydrate inhibitors
has the value less than unity.
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Table 1 (continued)

References

Thermodynamic model description

System conditions

Temperature, K Pressure, MPa Fugacity of the gas phase Fluid-phase thermodynamic

Fluid phase

Guest component

model

Pahlavanzadeh et al. (2019)

CPA

CPA

274.15

Water, sodium dodecyl sulfate

CH,, CO,

(SDS), cetyl trimethylammo-

nium bromide (CTAB), SiO,,
AlL,O5, and CuO

Water, water/ethanol

Water

Ferrari et al. (2016)

CPA
CPA

CPA
CPA

275.65-281.65 Upto3.5

Co,

Menezes et al. (2018)

21

272-300

Methane, methane—propane

A0\, B!
£ =exp <—Z#>[Aiexp<T_Cl{>] (18)

In Eq. (17), A; is the binary interaction parameters
expressing the interaction between the guest molecules in
the small voids and in the large voids; A;, B;, and C; are
the constants of component “i.” The values of them can be
optimized or found in the literature (Chen and Guo 1998).
Table 2 presents a review of the studies that used Chen—Guo

model for modeling of hydrate equilibrium conditions.

2.3 The equalization of water fugacity
in the hydrate and fluid phases

Another common approach in hydrate modeling is the equal-
ity of the water fugacities in all of the phases. Usually, three
phases, i.e., hydrate, hydrocarbon (either gas or liquid), and
liquid water, are considered, at the same temperature and
pressure. This thermodynamic problem can be formulized
as follows (Klauda and Sandler 2000):

£ =1, (19)
where the subscript “w” represents the water.

As stated, the vdW-P model assumes the equality of
the chemical potential of water in the hydrate and fluid
phases. Using the vdW-P expression of chemical potential,
the fugacity of water in the hydrate phase is calculated as
follows:

(20)

ot -t)

(
H _ ¢f w
s —fwexpl =

In Eq. (20), f f is the fugacity of empty hydrate lattice. The
fugacity of water in the gas and liquid phases is computed
using the EoS.

Based on phase equilibrium and by using different meth-
ods predicting fugacities, many more-or-less complex mod-
eling approaches have been developed (Table 3).

3 Results

Chocked up pipelines by hydrate were the main reasons for
starting researches about hydrate formation. Afterward, its
applications, such as gas storage and CO, capturing, were
discovered, and researchers became more interested in inves-
tigating the hydrate formation and dissociation conditions.
Indeed, in some cases hydrate formation is very beneficial,
whereas sometimes it has disadvantages; either way, this
research topic is of great importance (Shahnazar and Hasan
2014; Chen and Guo 1996; Parrish and Prausnitz 1972).
Inspired by Sloan (2005), Fig. 2 shows the increasing rate
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Table 2 Review of the works using Chen—Guo model

System conditions

Thermodynamic model description References

Guest component Fluid phase Temperature, K Pressure, MPa  Gas-phase fugacity Fluid phase
CoO, Water 273.8-282.32 4.39-17.05 CPA CPA Liet al. (2019)
N, a,=1
CH, Water, imidazolium-  272-287 2.5-11.9 CPA CPA Ahmadian et al.
based ionic liquids (2018)
including [EMIM]
[HSO,], [EMIM]
[EtSO,], [BMIM]
[BF,], [OH-EMIM]
[BE,], [BMIM][CI]
and [BMIM][Br]
CH, Water 275.5-299.7 0.5-4.6 CPA CPA and Pitzer— ZareNezhad and
CO, Deby—Hiickle to Ziaee (2013)
H,S predict the electro-
static activity
Methane, ethane, ‘Water ~250-295 0.10-100.1 CPA CPA and UNIFAC Sinehbaghizadeh
propane, carbon for activity et al. (2019)
dioxide, hydrogen
sulfide, nitrogen,
hydrogen, argon,
krypton, xenon,
and methyl fluoride
H,, C,-C;, THF Water 274-292 2-20 CPA (Patel-Teja for CPA (Patel-Teja for Ma et al. (2013)

physical term) physical term)

of the number of publications in the twentieth century. As
can be seen, the number of publications each year had an
increasing manner until 2010, when it started to oscillate.

As mentioned, thermodynamic modeling of gas hydrates
is one of the most important engineering topics, with lots
of applications in oil, gas, and chemical industries. The first
statistical EoS used to model these systems was the SAFT
EoS. Li et al. (2006) suggested the SAFT in conjunction
with the vdW-P to predict the behavior of single hydrates
(C,—C;, and CO,) in the presence of methanol and glyc-
erol as hydrate inhibitors. However, CPA application for the
vapor-liquid equilibria (VLE) (Folas et al. 2006) and liq-
uid-liquid equilibria (LLE) (Oliveira et al. 2007) of natural
gas hydrate composition has been investigated before 2007;
Kontogeorgis et al. (2007) were the first ones to combine
CPA EoS with the vdW-P model and suggested reliable
models for the phase behavior of water, alcohols, and natu-
ral gas components.

Tavasoli et al. (2016) investigated the influence of cyclic
hydrocarbons (i.e., benzene and cyclohexane) on the meth-
ane and CO, hydrates. They implemented the fugacity-
based model, in which Valderrama—Patel-Teja (VPT) EoS
[with non-density-dependent (NDD) mixing rule] (Valder-
rama 1990) and Statistical Associating Fluid Theory EoS
presented by Huang and Radosz (SAFT-HR) (Huang and
Radosz 1990, 1991) were compared. They investigated

@ Springer

the four systems of methane + benzene + water, meth-
ane + cyclohexane + water, CO, + benzene + water, and
CO, + cyclohexane + water and, respectively, reported the
error of 8.09, 8.42, 6.18, and 13.25 for the SAFT-HR EoS,
corresponding to 9.37, 6.95, 3.99, and 15.35 for VPT EoS.
Their obtained outcomes are shown in Fig. 3. As can be
seen, the two EoSs generally led to almost the same results;
however, the SAFT-HR superiority at high pressures is quite
visible. It is worth mentioning that due to the consideration
of associating term in SAFT-HR, it is expected to result in
more reliable predictions; nonetheless, in some cases, VPT
EoS even provided more accurate results. This can be attrib-
uted to the fact that the introduction of the fitting parameters
in the mixing rule (non-density-dependent) of VPT EoS
compensated its weaknesses.

In order to compare the error of the SAFT EoS with that
of some non-associating EoSs, the value of errors corre-
sponding to various EoSs for systems of pure natural gas
hydrates (C,—C,, CO,, H,S), their combination with alcohols
and electrolytes are tabulated in Table 4. As can be seen, for
the pure gas system, the SAFT EoS is not the most accurate
one. However, it results in a lower error in the cases of the
existence of alcohols and electrolytes.

Several factors influence the hydrate equilibrium calcula-
tions including: the hydrate model selection, the appropriate
EoS selection, type of hydrate former, existence of inhibitors
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Fig.3 Comparison of the experimental data (Sun et al. 2002; Tohidi et al. 1996; Tavasoli and Feyzi 2016; Danesh et al. 1993; Mohammadi et al.
2009a; Tavasoli and Feyzi 2016; Mooijer-van den Heuvel et al. 2001) and the predictions of SAFT-HR and VPT EoSs (Tavasoli and Feyzi 2016)
for the effect of cyclic hydrocarbons on the methane and CO, gas hydrates

@ Springer



Petroleum Science

Table 4 Comparison of the error resulting from different EoSs for natural gas hydrate, with and without alcohols and electrolytes

Study AADP, %*
Pure gases (C,-C,, CO,, H,S)
vdW-P model: fugacities and activity were, respectively, calculated using SAFT EoS, and UNIQAC (Kondori et al. 2018) 2.1748
Chen-G model: fugacities and activity were, respectively, calculated using SRK EoS, and UNIQAC (Delavar and Haghtalab 2014) 1.521
Fugacity-based model: using henry law and modified UNIFAC, respectively, to calculate gases solubility and aqueous-phase activ- 5.65
ity (Klauda and Sandler 2003)
vdW-P model: using Peng—Robinson for fugacity calculation (Zhang et al. 2006) 2.88
Fugacity-based model: using the Stryjek and Vera modification of Peng—Robinson EoS to calculate fugacities (Khosravani et al. 2.66
Khosravani et al. 2012)
Study AADT, %°
Pure gases (C,—C,, CO,, H,S) & alcohols (methanol, ethanol, glycerol)
vdW-P model: fugacities and activity were, respectively, calculated using SAFT EoS, and UNIQAC (Kondori et al. 2018) 0.183
vdW-P model: using Peng—Robinson and Aasberg-Petersen model, respectively, for fugacity and water activity calculation (Javan- 0.478
mardi et al. 2001)
Using modified Patel-Teja EoS for simplified Holder-John multi-shell hydrate model (Zuo et al. 1996) 0.865
Pure gases (C,—C,, CO,, H,S) and electrolytes (NaCl, KCl, CaCl,, and MgCl,)
vdW-P model: fugacities and activity were, respectively, calculated using SAFT EoS, and UNIQAC (Kondori et al. 2018) 0.1
Fugacity-based model: using the Stryjek and Vera modification of Peng—Robinson EoS and COSMO-SAC activity coefficient to 0.18
describe the fluid phases and VdW-P to describe the hydrate phase (Hsieh et al. 2012)
Fugacity-based model: using the Stryjek and Vera modification of Peng—Robinson EoS and COSMO-SAC activity coefficient to 0.16

describe the fluid phases and VdW-P to describe the hydrate phase (Chin et al. 2013)

# Average absolute deviation in pressure (AADP)

b Average absolute deviation in temperature (AADT)

and promoters in the system, and choosing the proper statis-
tical or empirical relations for calculation of the Langmuir
constants. In the thermodynamic modeling of hydrate equi-
librium conditions, two approaches are used in the literature.
The first approach is the chemical potential-based approach
introduced with the van der Waals-Platteeuw (vdW-P)
model, and the other one is the fugacity-based approach
proposed by Klauda—Sandler and Chen—Guo. There is also
a significant difference between the fugacity-based model
proposed by Klauda and Sandler and that obtained by
Chen—Guo. The basis of the Klauda—Sandler model is the
equality of water chemical potential in all coexisting phases,
while the basis of the Chen—Guo model is the equality of
the hydrate formers fugacities in all phases. Moreover, the
vdW-P ignores the contribution of water in the vapor phase
because of its low vapor pressures at the hydrate formation
temperature range. Therefore, several models with various
assumptions are available and the sensitivity analysis can be
applied for one model, for example, the vdW-P model. In
Table 5, as a case study, we compared the average absolute
relative deviation in calculated pressures of the PC-SAFT
EoS and the PR EoS for the same gases, the same hydrate
model (vdW-P), and the same Kihara parameters (Sloan Jr
and Koh 2007).

@ Springer

Table 5 Comparison between the average absolute relative deviation
of calculated pressures for the PC-SAFT EoS and the PR EoS (El
Meragawi et al. 2015)

Hydrate former PC-SAFT Peng—Robinson
Methane 11.12 6.86
Ethane 19.97 20.05
Propane 4.97 4.90
Isobutane 1.04 1.17
0, 57.68 64.25
N, 2.64 6.61
H,S 3.46 5.49
Average 14.35 15.63
Methane + propane 9.69 13.40
Methane + N, 11.10 8.61
Methane +H,S 8.38 8.35
Propane +N, 13.96 15.55
Average 14.58 11.28
Methane +N, +CO, 1.52 3.82
Methane +H,S + CO, 26.03 14.85
Methane + ethane + propane 13.62 6.46
Methane +ethane + N, 21.85 15.39
Methane + propane + isobutane 7.21 7.97
Average 14.05 9.70

To verify the inhibition effect of monoethylene glycol,
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Boesen et al. (2017) suggested a fugacity-based model for
C,, CO,, and H,S hydrate systems. They compared the
results of CPA and SRK EoSs and reached almost the same
results. Moreover, chapoy et al. (Chapoy et al. 2012a) con-
ducted an experimental and modeling assessment to investi-
gate the phase behavior of CO, + water system. Considering
the fugacity-based model, they compared the performance
of CPA, SRK [with Huron—Vidal (HV) (Huron and Vidal
1979) mixing rules], and VPT [with NDD (Valderrama
1990; Avlonitis et al. 1994; Wong and Sandler 1992) mix-
ing rule]. They came to the conclusion that VPT + NDD
model resulted in the highest accuracy, followed by CPA,
and SRK+HYV models. Implementing the fugacity-based
model, Karamoddin and Varaminian (Karamoddin and
Varaminian 2013) addressed the capability of three EoSs,
namely SRK, VPT, and CPA, for the prediction of refrig-
erants hydrate dissociation condition. Figure 4 provides a
visual comparison of the performance of these three EoSs
for HCFC22 hydrate. As can be seen, the three approaches
led to acceptable errors. Indeed, the average error of SRK,
VPT, and CPA was reported to be 2.8, 3.2, and 3.0 percent,
respectively. This implies that the associating term of CPA
was not able to provide the most accurate results.

In order to compare the popularity of the CPA and SAFT
EoSs, Fig. 5 is depicted. In general, the number of studies
related to CPA is higher. As can be seen, in some of the

0.9

® Exp

0.8

0.7 1

0.6 1

0.5 1

0.4 4

Pressure, bar

0.3 1

278 280 282 284 286 288 290 292

Temperature, K

Fig.4 Comparison between the results of SRK, VPT, and CPA EoSs
(Karamoddin and Varaminian 2013) with the experimental data of
HCFC22 hydrate (Karamoddin and Varaminian 2013; Javanmardi
et al. 2004; Maeda et al. 2008)

years (e.i. 2009, 2010, and 2012) the SAFT was not the case
of study at all. Moreover, the highest number of publica-
tions about CPA was published in 2019, whereas the SAFT
EoS was not considered in any publication in 2019. One can

mCPA mSAFT

3 4

2 4

LI I‘I L1 III‘
0 T T T T T T T T T T T T T

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Number of publications

Year

Fig.5 Comparison between the number of publications related to
CPA and SAFT

consider the complexity of the SAFT EoS for this obser-
vation. To fully investigate the reason for this, we need to
assess the type of gas hydrates along with the chemical for-
mula of the promoters and inhibitors. Thus, Fig. 6 is plotted.

As Fig. 6 exhibits, most of the applications of statistical
EoSs are related to natural gas hydrate. It is worth men-
tioning that usually a mixture of C,—Cs, CO,, N,, Ar, H,S,
0,, CO is considered as a synthetic natural gas. Figure 6b
demonstrates the number of publications using the CPA and
SAFT EoSs for different types of components including ILs,
electrolytes, surfactants, alcohols, and other hydrocarbons.
The number of publications implementing CPA is more
significant in almost all of the cases, even for electrolyte
mixtures. Kontogeorgis et al. (2007) stated that CPA and
SAFT result in similar predictions for mixtures of water and
alcohols (methanol, MEG, and TEG). Also, using the CPA
EoS leads to negligible errors for electrolyte mixtures (Cha-
poy et al. 2012b; Ngema et al. 2019a, b).

4 Conclusions

In this study, different approaches using statistical EoSs
for predicting hydrate dissociation conditions have been
reviewed. According to the fact that hydrate has many novel,
promising applications, its modeling has gained much atten-
tion. Indeed, as the models get developed, they are more
sophisticated in order to more accurately predict the phase
behavior of hydrates. Moreover, because of the existence of
water along with promoters, inhibitors, or even impurities
in the system, applying statistical thermodynamic equations
of states is of great importance. According to the previous
publications, CPA is more popular than SAFT. This can be
attributed to the fact that it is more facile and yet completely
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lications related to CPA and SAFT for natural gas hydrate

reliable. In addition, this study reveals that even though
using a complex associating EoS, such as SAFT or CPA,
contributes to slightly better results (e.g., for systems con-
taining alcohols or electrolytes), it does not necessarily guar-
antee more accurate predictions in all of the cases. Indeed,
the introduction of adjustable parameters in the mixing rule
of non-associating EoSs overcomes their weaknesses, mak-
ing them proper options for thermodynamically model such
polar systems.
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