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Abstract
The Yanchang Formation Chang 7 oil-bearing layer of the Ordos Basin is important in China for producing shale oil. The 
present-day in situ stress state is of practical implications for the exploration and development of shale oil; however, few 
studies are focused on stress distributions within the Chang 7 reservoir. In this study, the present-day in situ stress distribution 
within the Chang 7 reservoir was predicted using the combined spring model based on well logs and measured stress data. 
The results indicate that stress magnitudes increase with burial depth within the Chang 7 reservoir. Overall, the horizontal 
maximum principal stress (SHmax), horizontal minimum principal stress (Shmin) and vertical stress (Sv) follow the relation-
ship of Sv ≥ SHmax > Shmin, indicating a dominant normal faulting stress regime within the Chang 7 reservoir of Ordos Basin. 
Laterally, high stress values are mainly distributed in the northwestern parts of the studied region, while low stress values 
are found in the southeastern parts. Factors influencing stress distributions are also analyzed. Stress magnitudes within the 
Chang 7 reservoir show a positive linear relationship with burial depth. A larger value of Young’s modulus results in higher 
stress magnitudes, and the differential horizontal stress becomes higher when the rock Young’s modulus grows larger.

Keywords  Present-day in situ stress · Chang 7 shale oil reservoir · Influencing factor · Ordos Basin · Stress distribution 
prediction · Yanchang Formation

1  Introduction

With the continued development of hydrocarbon theories 
and recent exploration practices, the global oil and gas 
industry has gotten into the period of unconventional hydro-
carbon resources. The unconventional shale oil and gas, tight 
oil and gas, gas hydrates and coalbed methane have shown 
great potential under the present-day economic and tech-
nological conditions, and their production has changed the 
global energy consumption structure (Jia et al. 2012; Zou 
et al. 2013; Vedachalam et al. 2015). Among those uncon-
ventional resources, shale oil is defined as a kind of non-
gaseous hydrocarbon with great exploration and develop-
ment potential, which is generally accumulated in mudstone 
and shale layers in multiple states (Zhang et al. 2012, 2015; 
Zou et al. 2013).

In the past several years, commercial development of 
shale oil was successfully obtained in many countries of 
the world, e.g., the USA, Canada and Australia (Zhou et al. 
2019). In China, shale oil resources are abundant, and they 
are widely distributed in the Mesozoic-Cenozoic continental 
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basins, including the Songliao Basin, Junggar Basin, Ordos 
Basin, Qiangtang Basin, Bohai Bay Basin and Qaidam 
Basin (Yang et al. 2013, 2018; Zhang et al. 2015; Sun 2017; 
Zhou et al. 2017). In the Ordos Basin, shale oil resources 
are largely accumulated in the Yanchang Formation Chang 
7 oil-bearing layer, and the estimated amount is more than 
10 × 108 tons (Yang et al. 2013).

Generally, shale oil resources are dispersed over large 
areas, have lower concentrations and require well stimula-
tion or additional extraction technology (Zou et al. 2013). 
Hydraulic fracturing is an important approach for shale 
oil development. During hydraulic fracturing operations 
in unconventional hydrocarbon reservoirs, the present-day 
in situ stress state is a critical factor that should be taken into 
account (Bell 1996; Tingay et al. 2009; Schmitt et al. 2012; 
Ju et al. 2018). In addition, knowledge of present-day stress 
field indicates important effects on wellbore stability and 
reservoir management (Zoback et al. 2003; Binh et al. 2007; 
Tingay et al. 2009; Rajabi et al. 2016; Ju et al. 2017, 2019). 
Hence, a better understanding of the present-day in situ 
stress state will definitely help the exploration and develop-
ment of shale oil resources. However, few previous studies 
are carried out focusing on the present-day stress state in 
the Yanchang Formation Chang 7 oil-bearing layer, which 
limits the further exploration and development of shale oil 
in the Ordos Basin.

The objective of this study is to predict the present-day 
in situ stress distribution within the Yanchang Formation 
Chang 7 shale oil reservoir and analyze the influencing fac-
tors. The results are expected to bring new geological refer-
ences for shale oil production in the Ordos Basin.

2 � Geological setting

The Ordos Basin is the second-largest sedimentary basin in 
China, which has experienced a complex geological history. 
The present-day geomorphology indicates that the central 
part of the Ordos Basin is relatively stable, whereas the 
margins have undergone strong tectonic activities, result-
ing in structural complexity (Fig. 1; Zeng and Li 2009; 
Yang et al. 2012; Lyu et al. 2016; Ju et al. 2020). Within 
the Ordos Basin, large volumes of unconventional petro-
leum resources are accumulated in the Upper Triassic Yan-
chang Formation (Zeng and Li 2009; Ju et al. 2015; Zhang 
et al. 2015; Cui et al. 2019). The Yanchang Formation are 
generated in a lake-delta sedimentary system, and it can be 
divided into ten oil-bearing layers, known as the Chang 10 
to Chang 1 oil-bearing layer from bottom to top, based on 
sedimentary cycle, rock associations, log characteristics and 
oil-bearing properties of the deposits (Fig. 2; Yang et al. 
2012, 2016). The development of the Ordos lake basin gets 
its peak during the deposition of Chang 7 oil-bearing layer, 

and mudstone and shale layers of deep and semi-deep lake 
facies are widely distributed (Fu et al. 2015; Zhang et al. 
2015; Yang et al. 2016). In addition, the Chang 7 oil-bearing 
layer can be further divided into the Chang 71, Chang 72 and 
Chang 73 sublayers.

Generally, based on the differences in sedimentary struc-
ture, rock composition and TOC content, mudstones and 
shales in the Yanchang Formation Chang 7 oil-bearing layer 
of Ordos Basin can be divided into two types: black shales 
and dark mudstones (Fu et al. 2015; Yang et al. 2016). Lat-
erally, the Chang 7 shale is widely distributed with vari-
able thickness (Cui et al. 2019), and shale oil within the 
Chang 7 oil-bearing layer is mainly distributed in the Ding-
bian–Ansai–Huangling–Changwu–Pingliang–Huanxian 
regions (Fig. 3; Fu et al. 2015; Yang et al. 2016). Vertically, 
black shales are mainly in the Chang 73 sublayer, whereas 
dark mudstones are widely distributed in all three sublayers. 
The development scale of mudstones and/or shales greatly 
varies in different areas.

3 � In situ stress tensor

The present-day in situ stress state can be described by the 
stress tensor, which includes the orientation and magnitudes 
of three orthogonal principal stresses (Engelder 1993). In 
general, the stress tensor may be reduced to four compo-
nents, namely the magnitudes of horizontal maximum 
principal stress (SHmax), horizontal minimum principal 
stress (Shmin) and vertical stress (Sv), and the orientation of 
horizontal stresses (Bell 1996; Zoback et al. 2003; Ju et al. 
2017).

In addition, based on the relative magnitudes of SHmax, 
Shmin and Sv, three stress regimes are divided (Anderson 
1951; Fig. 4):

	 (i)	 normal faulting stress regime (Sv > SHmax > Shmin),
	 (ii)	 strike-slip faulting stress regime (SHmax > Sv > Shmin), 

and
	 (iii)	 thrust faulting stress regime (SHmax > Shmin > Sv).

4 � Methodology

4.1 � Rock mechanics

Knowledge of rock mechanics is critical for accurately pre-
dicting the present-day in situ stress distribution (Brooke-
Barnett et al. 2015; Ju et al. 2017). Generally, rock mechan-
ics experiment is an important and accurate approach to 
obtain the mechanics parameters (e.g., Young’s modulus, 
Poisson’s ratio), and the measured mechanics properties are 
static ones; however, this approach has its limitations: (i) 
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The collection of core samples is not continuous, resulting 
in the discrete rock mechanics parameters along with burial 
depth; (ii) it is money- and time-consuming.

Dynamic velocity-based mechanics properties are easy to 
calculate based on well logs (Eqs. 1 and 2; Binh et al. 2007; 
Fjaer et al. 2008; Brooke-Barnett et al. 2015), and more impor-
tantly, they are continuous along with burial depth. Hence, 

continuous static mechanics parameters can be obtained from 
dynamic data by building the relationship between them.

Dynamic Poisson’s ratio:
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Fig. 1   Simplified regional geological map of the Ordos Basin in central China (modified after Ritts et al. 2004; Ju et al. 2015)
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Dynamic Young’s modulus:

where vp and vs are the compressional and shear wave veloc-
ity, respectively, ρ is the density from bulk density logs, 
Ed is the dynamic Young’s modulus, and µd is the dynamic 
Poisson’s ratio.

(2)Ed =
�v2
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− 4v2
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4.2 � Method for predicting stress distribution

In general, the Sv is the simplest to calculate based on Eq. 3, 
which is the integration of rock densities from the surface to 
a particular depth (Zoback et al. 2003; Brooke-Barnett et al. 
2015; Ju et al. 2017).

where Sv is the vertical stress, g is the gravitational accelera-
tion, ρ(h) is the density of the overburden rock as a function 
of burial depth, and h indicates the burial depth from the 
surface to a particular depth.

In most regions including the Ordos Basin, density logs 
are not acquired from the ground level. Hence, in this study, 
an extrapolation method was used here and a stress gradient 
of approximately 23 kPa/m was identified in the open hole 
section to determine the Sv magnitude.

For horizontal stresses, there are various models to calcu-
late their magnitudes, which are generally categorized into 
the uniaxial strain mode and anisotropic mode (Table 1). The 
uniaxial strain mode assumes that horizontal stress is caused 
by the weight of overlying strata; hence, the SHmax and Shmin 
are the same in magnitude. However, the above assumption 
does not match the measured results of in situ stresses in 
most sedimentary basins (Yin et al. 2017).

In this study, the combined spring model (Thiercelin and 
Plumb 1994; Li and Zhang 1997; Table 1), a commonly used 
anisotropic mode, was selected to analyze horizontal in situ 
stresses within the Yanchang Formation Chang 7 shale oil 
reservoir of Ordos Basin. The combined spring model has 
two main advantages: (i) The strata are regarded as aniso-
tropic, and (ii) the effects of both Young’s modulus and Pois-
son’s ratio are taken into account.

4.3 � Pore pressure calculation

Pore pressure is an important parameter for calculating hori-
zontal stresses as obviously seen from the models listed in 
Table 1. Pore pressure can be divided into types of abnor-
mally low pressure, normal pressure, abnormally high pres-
sure and ultrahigh pressure based on pressure coefficient 
and/or pressure gradient (Du et al. 1995; Table 2).

Eaton’s method (Eaton 1972) for pore pressure predic-
tion can be made from either velocity or resistivity measure-
ments in the well. The following equation (Eq. 4) indicates 
the empirical equation from the sonic compressional transit 
time.

(3)Sv =

h

∫
0

�(h)gdh

(4)Po = Sv −
(

Sv − P
)

(

Δtn

Δt

)n

Formation Oil-bearing
layer Lithology

Th
e 

U
pp

er
 T

ria
ss

ic
 Y

an
ch

an
g 

Fo
rm

at
io

n

Chang 1

Chang 2

Chang 3

Chang 4+5

Chang 6

Chang 7

Chang 8

Chang 9

Chang 10

Sedimentary
facies

Fluvial-
Lacustrine-

Swamp

Fluvial-
Lacustrine

Deep-
Lacustrine

Lacustrine

Fluvial

Conglomerate Sandstone Argillaceous
sandstone

Sandy
mudstone

Mudstone Shale

Fig. 2   Generalized stratigraphy of the Upper Triassic Yanchang For-
mation in the Ordos Basin



Petroleum Science	

1 3

where Po is pore pressure, Sv is the vertical stress, P is the 
hydrostatic pore pressure, Δtn is the sonic transit time or 
slowness at the normal pressure, Δt is the sonic transit time 
obtained from logs, and n is an exponent.

5 � Parameters for stress distribution 
prediction

5.1 � Relationships between static and dynamic 
mechanics parameters

Based on measurements from rock mechanics experiments 
and calculations from well logs (Table 3), the relationships 
between static and dynamic Poisson’s ratio and Young’s 
modulus are shown as Eqs. 5 and 6, respectively.
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where Ed and Es are the dynamic and static Young’s modu-
lus, respectively, and µd and µs are the dynamic and static 
Poisson’s ratio, respectively.

(5)�s = 1.5809�d − 0.0880

(6)Es = 0.1316Ed + 19.5700

5.2 � Model calibration

The εH and εh for the Chang 7 reservoir in the combined 
spring model are calibrated with measured data derived 
from extended leak-off tests (XLOTs) (Table 4) based on 
Eqs. 7 and 8 (Bredehoeft et al. 1976; White et al. 2002; 
Zoback et al. 2003; Ju et al. 2017).

where SHmax and Shmin are the horizontal maximum and 
minimum stress, respectively, Pc is the shut-in pressure, 
Po is the pore pressure, and Pr is the reopening pressure 
at which closed fractures begin to reopen during repeated 
pressurization.

Therefore, the average εH and εh for the Chang 7 reservoir 
can be calculated based on Eqs. 7 and 8, combined spring 

(7)Shmin = Pc

(8)SHmax = 3Shmin − Pr − Po

Table 1   Empirical models for calculating in situ stress magnitude

SHmax, horizontal maximum principal stress; Shmin, horizontal minimum principal stress; Sv, vertical stress; α, Biot coefficient; µ, Poisson’s ratio; 
K, skeleton stress coefficient; Po, pore pressure; β1 and β2, coefficients reflecting the horizontal maximum and minimum tectonic stress, respec-
tively; εH and εh, rock strain in the direction of the horizontal maximum and minimum principal stress, respectively; E, Young’s modulus; KH 
and Kh, tectonic stress coefficient in the horizontal maximum and minimum principal stress direction, respectively; ΔT, formation temperature 
variation; αT, rock linear expansion coefficient; ΔSH and ΔSh, in situ stress additional quantity in the horizontal maximum and minimum princi-
pal stress direction, respectively; γ, a coefficient that is relevant with Biot coefficient and Poisson’s ratio

Model name Empirical model expression Characteristics References

Uniaxial strain 
mode

Dinnik model S
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=
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layers without pore pressure
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o
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(1973)
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Considering the uniformity of 
horizontal stresses and the effect 
of Young’s modulus

After Yin et al. 
(2017)

Table 2   The classification of pore pressure (after Du et al. 1995)

Types Pressure coef-
ficient

Pressure gradient, 
kPa/m

Abnormally low pressure < 0.96 < 9.28
Normal pressure 0.96–1.06 9.28–10.41
Abnormally high pressure 1.06–1.38 10.41–13.58
Ultrahigh pressure > 1.38 > 13.58
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model and those measured stress data in Table 4, and the 
magnitudes are εH = 0.5717 and εh = 0.2811, respectively.

5.3 � Pore pressure within the Chang 7 reservoir

Based on measured pore pressure data from Li et  al. 
(2013) and Duan et al. (2014), the average pressure coef-
ficient within the Chang 7 reservoir ranges between 0.70 
and 0.83. Therefore, currently, the Yanchang Formation 
Chang 7 shale oil reservoir of Ordos Basin experiences 
the abnormally low pressure.

6 � Stress distribution within the Chang 7 
shale reservoir

6.1 � Vertical distribution of present‑day in situ 
stresses

Based on the combined spring model for Chang 7 reservoir 
in this study, error analysis is carried out in this study, 
and results indicate that the errors between measured and 
predicted SHmax and Shmin are generally less than 15% with 
the majority lower than 10% (Table 4).

Table 3   The comparison of rock mechanics between experiments and calculations within the Yanchang Formation Chang 7 shale reservoir of 
Ordos Basin

Well Burial depth, m Young’s modulus, GPa Error, % Poisson’s ratio Error, %

Experiment Calculation Experiment Calculation

M40 2224.95 25.114 25.817 2.80 0.237 0.252 6.28
N76 1722.31 24.868 25.179 1.25 0.270 0.269 0.27
N78 1625.70 25.000 25.338 1.35 0.305 0.239 21.56
N78 1675.35 23.984 25.505 6.34 0.260 0.258 0.69
W67 2045.39 26.425 25.127 4.91 0.254 0.239 5.81
W98 1967.70 31.500 24.943 20.82 0.270 0.253 6.12
X65 1734.60 26.744 25.624 4.19 0.227 0.257 13.06
X67 1757.34 21.762 25.456 16.97 0.244 0.231 5.19
X69 1886.90 28.736 25.412 11.57 0.241 0.244 1.24
Zn284 2095.15 24.194 25.170 4.04 0.258 0.250 2.98

Table 4   Statistical results of the measured and predicted present-day in situ stress magnitudes within the Yanchang Formation of Ordos Basin

Well Burial depth, m SHmax, MPa Error, % Shmin, MPa Error, %

Measured data Predicted data Measured data Predicted data

Zu131 1514.12 32.64 33.741 3.373 26.79 28.086 4.838
1517.00 31.88 34.040 6.775 25.31 27.829 9.953
1687.67 35.32 32.610 7.673 28.08 26.737 4.782
1688.00 35.41 32.605 7.923 28.11 26.746 4.852

Zu115 1817.40 38.17 37.357 2.131 31.35 30.991 1.144
1855.20 34.13 33.747 1.122 28.06 28.299 0.852
1866.60 39.20 35.079 10.512 30.97 28.252 8.775

Y410 2250.00 39.92 41.224 3.266 33.92 36.400 7.311
Y296 2190.10 38.61 39.166 1.439 33.51 31.937 4.694
Y297 2145.08 43.24 40.125 7.204 36.87 31.676 14.088

2155.14 36.04 37.893 5.143 28.17 30.141 6.996
2158.37 40.59 39.090 3.695 35.58 31.214 12.272
2164.44 34.25 38.528 12.489 28.98 30.832 6.389
2172.79 33.28 38.533 15.785 26.59 30.809 15.867
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Therefore, the one-dimensional mechanical earth model 
can be conducted for the Chang 7 shale reservoir and the 
vertical distribution of present-day in situ stresses is pre-
dicted (Fig. 5). Generally, within the Yanchang Formation 
Chang 7 shale oil reservoir of Ordos Basin, the SHmax, Shmin 
and Sv magnitudes all increase with burial depth. Overall, 
they follow the relationship Sv ≥ SHmax ≥ Shmin, indicating a 
dominant normal faulting stress regime (Fig. 5). The results 
are consistent with those actual stress measurements in the 
southwestern parts of the studied region (Wang et al. 2014).

6.2 � Lateral distribution of present‑day in situ 
stresses

In this study, totally, the vertical distribution of stress 
magnitudes in the Chang 7 shale reservoir was conducted 
and analyzed in 101 wells. In the following, the study area 
is divided into 93 × 100 grids, and the average stress mag-
nitude of SHmax, Shmin and Sv for each grid is interpolated 

using the Kriging method based on stress values from 
adjacent wells. Therefore, the lateral distribution of pre-
sent-day stresses within the Yanchang Formation Chang 
71, Chang 72 and Chang 73 sublayer can be obtained and 
analyzed (Figs. 6, 7 and 8).

The SHmax magnitude varies in the interval of 
26–46  MPa, 27–46  MPa and 24–47  MPa within the 
Chang 71, Chang 72 and Chang 73 sublayer, respectively 
(Figs. 6, 7 and 8). The Shmin magnitude ranges 21–38 MPa, 
22–40 MPa and 21–43 MPa in the Chang 71, Chang 72 
and Chang 73 sublayer, respectively (Figs. 6, 7 and 8). 
The Sv magnitude indicates 22–62 MPa, 24–64 MPa and 
24–64 MPa within the Chang 71, Chang 72 and Chang 73 
sublayer, respectively (Figs. 6, 7 and 8). Generally, stress 
distributions in all three sublayers of Yanchang Formation 
Chang 7 shale oil reservoir indicate similar characteristics 
with higher and lower stress values located in the north-
western and southeastern regions of the studied region 
(Figs. 6, 7 and 8).
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7 � Discussions

7.1 � Factors influencing stress distribution

The factor of burial depth indicates an important control 
on present-day in situ stress distribution. In this study, the 
relationship between stress magnitude in top Chang 71, 
Chang 72 and Chang 73 sublayer and the corresponding 
burial depth is conducted to analyze the effect of burial 
depth on stress distribution (Fig. 9). Obviously, for the 

Yanchang Formation Chang 7 shale oil reservoir of Ordos 
Basin, both the SHmax and Shmin magnitudes show the linear 
relationships with burial depth (Eqs. 9 and 10).

where SHmax and Shmin are the horizontal maximum and min-
imum principal stress, respectively, h indicates the burial 
depth, and R is the correlation coefficient.

(9)SHmax = 0.0117h + 15.2490 R2 = 0.8997

(10)Shmin = 0.0107h + 11.4290 R2 = 0.8147
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Fig. 6   Lateral distribution of present-day in situ stress magnitudes within the Yanchang Formation Chang 71 sublayer of Ordos Basin. a SHmax, b 
Shmin and c Sv. Stress unit: MPa
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The studied region of Ordos Basin is a tectonically sta-
ble area; hence, the stress distribution is largely controlled 
by lithological changes (rock mechanics) due to the lack 
of faults and folds (Zoback et al. 2003; Zhou et al. 2007; 
Ju et al. 2015). Therefore, in this study, the relationship 
between rock Young’s modulus and stress magnitude is ana-
lyzed to understand rock mechanics on stress distribution. 
The selected data for analysis are mainly from Wells Zu131, 
Zu115, Y410, Y296 and Y297 because these wells have both 
measured and predicted stress magnitudes. In addition, to 
avoid the effect of burial depth and Poisson’s ratio on the 
results, the Poisson’s ratio is fixed within a small scale rang-
ing between 0.200 and 0.205. The burial depth for selected 

data is divided into two segments: 1533.25–1783.75 m and 
2187.00–2351.25 m.

The results indicate that stress magnitudes increase with 
Young’s modulus (Fig. 10), suggesting that rock Young’s 
modulus exhibits a significant effect on stress transfer 
through the reservoir and that the stiffer rocks commonly 
conveyed higher stress magnitudes. In addition, the dif-
ferential stress between SHmax and Shmin is an important 
parameter in hydraulic fracturing. Low differential stress 
can commonly produce a complex hydraulic fracture sys-
tem (Zhou et al. 2007; Ju et al. 2018). Obviously, the hori-
zontal differential stress becomes higher with the increase 
in Young’s modulus in the Yanchang Formation Chang 7 
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Shmin and c Sv. Stress unit: MPa
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reservoir (Fig. 10); hence, relatively high Young’s modulus 
will result in simple hydraulic fracture systems.

7.2 � Vertical stress pattern

The magnitudes of in situ stress vary greatly with burial 
depth in the Yanchang Formation Chang 7 reservoir (Fig. 5), 
which is mainly caused by the difference in rock mechanics 
parameters, especially the Young’s modulus. Based on Zhou 
et al. (2007), there are mainly five types of vertical stress 
patterns (A–E), all of which are present in the Chang 7 shale 
oil reservoir of Ordos Basin (Fig. 5):

Type A: high–low–high (HLH). Stress magnitudes in the 
roof and floor layers are much higher than those in the target 
fracturing layer. Vertical propagation of hydraulic fractures 
in this stress pattern will be largely limited due to the rela-
tively high stress difference between layers.

Type B: low–low–high (LLH). Stress magnitudes in the 
roof and target fracturing layers are generally close to each 
other, but are lower than those in the floor layer. The upward 
propagation of hydraulic fractures is easily in this pattern.

Type C: high–low–low (HLL). Stress magnitudes in 
the floor and target fracturing layers are generally close to 
each other, but are lower than those in the roof layer. The 
downward propagation of hydraulic fractures is easily in this 
pattern.

Type D: interbedded. Stress magnitudes change fre-
quently in all layers. Hydraulic fractures can propagate both 
upward and downward.

Type E: uniform. Stress magnitudes are generally 
unchanged in all layers. Hydraulic fractures can also propa-
gate both upward and downward.

Vertical stress pattern is critical for understanding the 
vertical propagation of hydraulic fractures in layered media. 
Therefore, with accurate assessments of vertical stress 

pattern, the scale of hydraulic fracturing and the develop-
ment of well network can be determined rationally (Feng 
et al. 2019).

8 � Conclusions

In this study, the present-day in situ stress distribution within 
the Yanchang Formation Chang 7 shale oil reservoir is pre-
dicted based on well logs calibrated with measured data 
using the combined spring model. The effects of burial depth 
and Young’s modulus on stress distribution are also ana-
lyzed. The results in this study are expected to provide some 
new geological references for the exploration and develop-
ment of shale oil within the Yanchang Formation Chang 7 
oil-bearing layer of the Ordos Basin.

Generally, the following results and conclusions can be 
obtained:

1.	 In this study, a one-dimensional mechanical earth model 
is conducted, and the results indicate that the SHmax, 
Shmin and Sv magnitudes all increase with burial depth, 
and a dominant normal faulting stress regime is in the 
Yanchang Formation Chang 7 shale oil reservoir of 
Ordos Basin.

2.	 In the studied region, relatively high and low present-day 
stress magnitudes are distributed in the northwestern and 
southeastern regions, respectively.

3.	 The factor of burial depth indicates a linear relation-
ship with burial depth; a larger burial depth results in a 
higher stress magnitude.

4.	 Rock Young’s modulus shows a great effect on the 
present-day stress distribution. Larger Young’s mod-
uli produce higher stress magnitudes. In addition, the 
horizontal differential stress will become higher with 
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the increase in Young’s modulus, resulting in simple 
hydraulic fracture systems.
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