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Abstract

The Yanchang Formation Chang 7 oil-bearing layer of the Ordos Basin is important in China for producing shale oil. The
present-day in situ stress state is of practical implications for the exploration and development of shale oil; however, few
studies are focused on stress distributions within the Chang 7 reservoir. In this study, the present-day in situ stress distribution
within the Chang 7 reservoir was predicted using the combined spring model based on well logs and measured stress data.
The results indicate that stress magnitudes increase with burial depth within the Chang 7 reservoir. Overall, the horizontal
maximum principal stress (Syp.y)» horizontal minimum principal stress (Sy,,;,) and vertical stress (S,) follow the relation-
ship of S|, > Symax > Shmin» 1Ndicating a dominant normal faulting stress regime within the Chang 7 reservoir of Ordos Basin.
Laterally, high stress values are mainly distributed in the northwestern parts of the studied region, while low stress values
are found in the southeastern parts. Factors influencing stress distributions are also analyzed. Stress magnitudes within the
Chang 7 reservoir show a positive linear relationship with burial depth. A larger value of Young’s modulus results in higher
stress magnitudes, and the differential horizontal stress becomes higher when the rock Young’s modulus grows larger.

Keywords Present-day in situ stress - Chang 7 shale oil reservoir - Influencing factor - Ordos Basin - Stress distribution
prediction - Yanchang Formation

1 Introduction

Edited by Jie Hao With the continued development of hydrocarbon theories
and recent exploration practices, the global oil and gas
industry has gotten into the period of unconventional hydro-
carbon resources. The unconventional shale oil and gas, tight
oil and gas, gas hydrates and coalbed methane have shown
great potential under the present-day economic and tech-
nological conditions, and their production has changed the
global energy consumption structure (Jia et al. 2012; Zou
et al. 2013; Vedachalam et al. 2015). Among those uncon-
ventional resources, shale oil is defined as a kind of non-
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gaseous hydrocarbon with great exploration and develop-
ment potential, which is generally accumulated in mudstone
and shale layers in multiple states (Zhang et al. 2012, 2015;
Zou et al. 2013).

In the past several years, commercial development of
shale oil was successfully obtained in many countries of
the world, e.g., the USA, Canada and Australia (Zhou et al.
2019). In China, shale oil resources are abundant, and they
are widely distributed in the Mesozoic-Cenozoic continental
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basins, including the Songliao Basin, Junggar Basin, Ordos
Basin, Qiangtang Basin, Bohai Bay Basin and Qaidam
Basin (Yang et al. 2013, 2018; Zhang et al. 2015; Sun 2017;
Zhou et al. 2017). In the Ordos Basin, shale oil resources
are largely accumulated in the Yanchang Formation Chang
7 oil-bearing layer, and the estimated amount is more than
10 108 tons (Yang et al. 2013).

Generally, shale oil resources are dispersed over large
areas, have lower concentrations and require well stimula-
tion or additional extraction technology (Zou et al. 2013).
Hydraulic fracturing is an important approach for shale
oil development. During hydraulic fracturing operations
in unconventional hydrocarbon reservoirs, the present-day
in situ stress state is a critical factor that should be taken into
account (Bell 1996; Tingay et al. 2009; Schmitt et al. 2012;
Ju et al. 2018). In addition, knowledge of present-day stress
field indicates important effects on wellbore stability and
reservoir management (Zoback et al. 2003; Binh et al. 2007,
Tingay et al. 2009; Rajabi et al. 2016; Ju et al. 2017, 2019).
Hence, a better understanding of the present-day in situ
stress state will definitely help the exploration and develop-
ment of shale oil resources. However, few previous studies
are carried out focusing on the present-day stress state in
the Yanchang Formation Chang 7 oil-bearing layer, which
limits the further exploration and development of shale oil
in the Ordos Basin.

The objective of this study is to predict the present-day
in situ stress distribution within the Yanchang Formation
Chang 7 shale oil reservoir and analyze the influencing fac-
tors. The results are expected to bring new geological refer-
ences for shale oil production in the Ordos Basin.

2 Geological setting

The Ordos Basin is the second-largest sedimentary basin in
China, which has experienced a complex geological history.
The present-day geomorphology indicates that the central
part of the Ordos Basin is relatively stable, whereas the
margins have undergone strong tectonic activities, result-
ing in structural complexity (Fig. 1; Zeng and Li 20009;
Yang et al. 2012; Lyu et al. 2016; Ju et al. 2020). Within
the Ordos Basin, large volumes of unconventional petro-
leum resources are accumulated in the Upper Triassic Yan-
chang Formation (Zeng and Li 2009; Ju et al. 2015; Zhang
et al. 2015; Cui et al. 2019). The Yanchang Formation are
generated in a lake-delta sedimentary system, and it can be
divided into ten oil-bearing layers, known as the Chang 10
to Chang 1 oil-bearing layer from bottom to top, based on
sedimentary cycle, rock associations, log characteristics and
oil-bearing properties of the deposits (Fig. 2; Yang et al.
2012, 2016). The development of the Ordos lake basin gets
its peak during the deposition of Chang 7 oil-bearing layer,
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and mudstone and shale layers of deep and semi-deep lake
facies are widely distributed (Fu et al. 2015; Zhang et al.
2015; Yang et al. 2016). In addition, the Chang 7 oil-bearing
layer can be further divided into the Chang 7,, Chang 7, and
Chang 7, sublayers.

Generally, based on the differences in sedimentary struc-
ture, rock composition and TOC content, mudstones and
shales in the Yanchang Formation Chang 7 oil-bearing layer
of Ordos Basin can be divided into two types: black shales
and dark mudstones (Fu et al. 2015; Yang et al. 2016). Lat-
erally, the Chang 7 shale is widely distributed with vari-
able thickness (Cui et al. 2019), and shale oil within the
Chang 7 oil-bearing layer is mainly distributed in the Ding-
bian—Ansai—-Huangling—Changwu—Pingliang—Huanxian
regions (Fig. 3; Fu et al. 2015; Yang et al. 2016). Vertically,
black shales are mainly in the Chang 7; sublayer, whereas
dark mudstones are widely distributed in all three sublayers.
The development scale of mudstones and/or shales greatly
varies in different areas.

3 In situ stress tensor

The present-day in situ stress state can be described by the
stress tensor, which includes the orientation and magnitudes
of three orthogonal principal stresses (Engelder 1993). In
general, the stress tensor may be reduced to four compo-
nents, namely the magnitudes of horizontal maximum
principal stress (Syp.,), horizontal minimum principal
stress (Symin) and vertical stress (S, ), and the orientation of
horizontal stresses (Bell 1996; Zoback et al. 2003; Ju et al.
2017).

In addition, based on the relative magnitudes of Sy,
Spmin and S, three stress regimes are divided (Anderson
1951; Fig. 4):

(i) normal faulting stress regime (S, > Symax > Shmin)s
(i1) strike-slip faulting stress regime (Symax > Sy > Shmin)s
and
(iii) thrust faulting stress regime (Spmax > Shmin > Sv)-

4 Methodology
4.1 Rock mechanics

Knowledge of rock mechanics is critical for accurately pre-
dicting the present-day in situ stress distribution (Brooke-
Barnett et al. 2015; Ju et al. 2017). Generally, rock mechan-
ics experiment is an important and accurate approach to
obtain the mechanics parameters (e.g., Young’s modulus,
Poisson’s ratio), and the measured mechanics properties are
static ones; however, this approach has its limitations: (i)
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Fig. 1 Simplified regional geological map of the Ordos Basin in central China (modified after Ritts et al. 2004; Ju et al. 2015)

The collection of core samples is not continuous, resulting
in the discrete rock mechanics parameters along with burial
depth; (ii) it is money- and time-consuming.

Dynamic velocity-based mechanics properties are easy to
calculate based on well logs (Egs. 1 and 2; Binh et al. 2007;
Fjaer et al. 2008; Brooke-Barnett et al. 2015), and more impor-
tantly, they are continuous along with burial depth. Hence,

continuous static mechanics parameters can be obtained from
dynamic data by building the relationship between them.
Dynamic Poisson’s ratio:

2~ (vp/vs)2

2(1 - (vp/vs)Z)

Ha= (M
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Fig.2 Generalized stratigraphy of the Upper Triassic Yanchang For-
mation in the Ordos Basin

Dynamic Young’s modulus:

pv3<3v§ — 4v§> )
Ba=—0 @
P S

where v, and v, are the compressional and shear wave veloc-
ity, respectively, p is the density from bulk density logs,
E, is the dynamic Young’s modulus, and u; is the dynamic

Poisson’s ratio.
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4.2 Method for predicting stress distribution

In general, the S|, is the simplest to calculate based on Eq. 3,
which is the integration of rock densities from the surface to
a particular depth (Zoback et al. 2003; Brooke-Barnett et al.
2015; Ju et al. 2017).

h

Sv=/p(h)gdh 3)

0

where S, is the vertical stress, g is the gravitational accelera-
tion, p(h) is the density of the overburden rock as a function
of burial depth, and % indicates the burial depth from the
surface to a particular depth.

In most regions including the Ordos Basin, density logs
are not acquired from the ground level. Hence, in this study,
an extrapolation method was used here and a stress gradient
of approximately 23 kPa/m was identified in the open hole
section to determine the S, magnitude.

For horizontal stresses, there are various models to calcu-
late their magnitudes, which are generally categorized into
the uniaxial strain mode and anisotropic mode (Table 1). The
uniaxial strain mode assumes that horizontal stress is caused
by the weight of overlying strata; hence, the Sy, and Sy i
are the same in magnitude. However, the above assumption
does not match the measured results of in situ stresses in
most sedimentary basins (Yin et al. 2017).

In this study, the combined spring model (Thiercelin and
Plumb 1994; Li and Zhang 1997; Table 1), a commonly used
anisotropic mode, was selected to analyze horizontal in situ
stresses within the Yanchang Formation Chang 7 shale oil
reservoir of Ordos Basin. The combined spring model has
two main advantages: (i) The strata are regarded as aniso-
tropic, and (ii) the effects of both Young’s modulus and Pois-
son’s ratio are taken into account.

4.3 Pore pressure calculation

Pore pressure is an important parameter for calculating hori-
zontal stresses as obviously seen from the models listed in
Table 1. Pore pressure can be divided into types of abnor-
mally low pressure, normal pressure, abnormally high pres-
sure and ultrahigh pressure based on pressure coefficient
and/or pressure gradient (Du et al. 1995; Table 2).

Eaton’s method (Eaton 1972) for pore pressure predic-
tion can be made from either velocity or resistivity measure-
ments in the well. The following equation (Eq. 4) indicates
the empirical equation from the sonic compressional transit
time.

A n
P0=Sv_(Sv_P)<At:> 4
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Fig.3 The thickness map showing the Yanchang Formation Chang 7 black shale (a) and dark mudstone (b) in the Ordos Basin (after Fu et al.
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Fig.4 Schematic illustration showing the types of in situ stress regime based on Anderson’s classification (after Brooke-Barnett et al. 2015; Ju
et al. 2017). a thrust faulting stress regime, b strike-slip faulting stress regime and ¢ normal faulting stress regime. The pink plane indicates the
orientation of a propagated hydraulic fracture in the associated stress regime

where P is pore pressure, S, is the vertical stress, P is the
hydrostatic pore pressure, At, is the sonic transit time or
slowness at the normal pressure, At is the sonic transit time
obtained from logs, and  is an exponent.

5 Parameters for stress distribution
prediction

5.1 Relationships between static and dynamic
mechanics parameters

Based on measurements from rock mechanics experiments
and calculations from well logs (Table 3), the relationships
between static and dynamic Poisson’s ratio and Young’s
modulus are shown as Egs. 5 and 6, respectively.
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Table 1 Empirical models for calculating in situ stress magnitude

Model name Empirical model expression Characteristics References
Uniaxial strain

mode
Dinnik model Stimax = Shmin = 7Sy For homogeneous and isotropic Dinnik (1925)

Matthews and Kelly S, —=§, . = K(sV - po) +P,
model

Eaton model Stmax = Shmin = ﬁ (8, - PO) +P,

Anderson model Stmax = Shmin = IL (S, —P,) +aP,

Newberry model Stmax = Shmin = IL (Sv —

Anisotropic mode

Huang model

~—

Stimax = (£ + 81 ) (S, = aPy) + aP,

Shmin = (ﬁ +ﬂ2>(Sv —aPo) +O,’P0

layers without pore pressure

Obtained from hydraulic fracturing Matthews and Kelly

with pore pressure, but K is hard (1967)
to determine
K = ﬁ Eaton (1969)
Biot coefficient () is introduced Anderson et al.
1973)
For low porosity and low perme- Newberry et al.
ability layers with microfractures (1985)
The tectonic stress coefficient Huang (1984)

is introduced, but the effect of
Young’s modulus is ignored

Combined spring g~ — £ (S, —aP,) +aP, + Loy b Horizontal deformation is constant  Thiercelin and Plumb
model Sumin = ~2(S, — aP,) + aP, + g e (1994) and Li and
hmin 1—u \"V o o 1—u? 1—u?
Zhang (1997)
Li and Zhang model ¢ _ o ( S —aP ) +aP + EKu(S,~aP,) | o"EAT Hydraulic fractures are vertical, Li and Zhang (1997)
Hmax = 7, \"v ° ° B, (S ", ) N and the minimum stress is in the
Spmin = ﬁ (S, —aP,) +aP, + th an horizontal direction
Sy = ( S, —a Po) +aP, + EKy(S,~aP,) 4 CTEAT A Sy Hydraulic fr.ac.:tures are hopz.ontal,
I-p - (Slt;;P ) o and the minimum stress is in the
Shmin = ﬁ (SV - OIPO) +aP, + h+“° + 'ZIT + AS, vertical direction
Schlumberger S, = LS —2yp 4 EowtuEem Considering the uniformity of After Yin et al.
model e lﬂ_"s ' 2vP O, Eeptnle, horizontal stresses and the effect (2017)
hmin = 7,0y ~ Vot =T 5

of Young’s modulus

Stmax» NOrizontal maximum principal stress; Sy .., horizontal minimum principal stress; S,, vertical stress; a, Biot coefficient; y, Poisson’s ratio;
K, skeleton stress coefficient; P,, pore pressure; £, and f,, coefficients reflecting the horizontal maximum and minimum tectonic stress, respec-
tively; ey and &, rock strain in the direction of the horizontal maximum and minimum principal stress, respectively; E, Young’s modulus; Ky
and K,, tectonic stress coefficient in the horizontal maximum and minimum principal stress direction, respectively; AT, formation temperature
variation; a¥, rock linear expansion coefficient; ASy and AS), in situ stress additional quantity in the horizontal maximum and minimum princi-
pal stress direction, respectively; y, a coefficient that is relevant with Biot coefficient and Poisson’s ratio

Table 2 The classification of pore pressure (after Du et al. 1995)

Types Pressure coef-  Pressure gradient,
ficient kPa/m

Abnormally low pressure <0.96 <9.28

Normal pressure 0.96-1.06 9.28-10.41

Abnormally high pressure 1.06-1.38 10.41-13.58

Ultrahigh pressure >1.38 >13.58

s = 1.58094,4 — 0.0880 5)

E; =0.1316E; + 19.5700 6)

where E; and E are the dynamic and static Young’s modu-
lus, respectively, and u4 and g are the dynamic and static
Poisson’s ratio, respectively.
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5.2 Model calibration

The & and &, for the Chang 7 reservoir in the combined
spring model are calibrated with measured data derived
from extended leak-off tests (XLOTSs) (Table 4) based on
Egs. 7 and 8 (Bredehoeft et al. 1976; White et al. 2002;
Zoback et al. 2003; Ju et al. 2017).

Shmin =P c (7)

SHmax = 3Shmin - Pr - Po (8)

where Sy.x and Sy, are the horizontal maximum and
minimum stress, respectively, P, is the shut-in pressure,
P, is the pore pressure, and P, is the reopening pressure
at which closed fractures begin to reopen during repeated
pressurization.

Therefore, the average &;; and &, for the Chang 7 reservoir
can be calculated based on Eqgs. 7 and 8, combined spring
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Table 3 The comparison of rock mechanics between experiments and calculations within the Yanchang Formation Chang 7 shale reservoir of

Ordos Basin
Well Burial depth, m Young’s modulus, GPa Error, % Poisson’s ratio Error, %
Experiment Calculation Experiment Calculation

M40 2224.95 25.114 25.817 2.80 0.237 0.252 6.28
N76 1722.31 24.868 25.179 1.25 0.270 0.269 0.27
N78 1625.70 25.000 25.338 1.35 0.305 0.239 21.56
N78 1675.35 23.984 25.505 6.34 0.260 0.258 0.69
w67 2045.39 26.425 25.127 491 0.254 0.239 5.81
W98 1967.70 31.500 24.943 20.82 0.270 0.253 6.12
X65 1734.60 26.744 25.624 4.19 0.227 0.257 13.06
X67 1757.34 21.762 25.456 16.97 0.244 0.231 5.19
X69 1886.90 28.736 25.412 11.57 0.241 0.244 1.24
7Zn284 2095.15 24.194 25.170 4.04 0.258 0.250 2.98

Table 4 Statistical results of the measured and predicted present-day in situ stress magnitudes within the Yanchang Formation of Ordos Basin

Well Burial depth, m Stmax> MPa Error, % Stmin» MPa Error, %
Measured data Predicted data Measured data Predicted data

Zul31 1514.12 32.64 33.741 3.373 26.79 28.086 4.838
1517.00 31.88 34.040 6.775 25.31 27.829 9.953
1687.67 35.32 32.610 7.673 28.08 26.737 4.782
1688.00 3541 32.605 7.923 28.11 26.746 4.852

Zull5 1817.40 38.17 37.357 2.131 31.35 30.991 1.144
1855.20 34.13 33.747 1.122 28.06 28.299 0.852
1866.60 39.20 35.079 10.512 30.97 28.252 8.775

Y410 2250.00 39.92 41.224 3.266 33.92 36.400 7.311

Y296 2190.10 38.61 39.166 1.439 33.51 31.937 4.694

Y297 2145.08 43.24 40.125 7.204 36.87 31.676 14.088
2155.14 36.04 37.893 5.143 28.17 30.141 6.996
2158.37 40.59 39.090 3.695 35.58 31.214 12.272
2164.44 34.25 38.528 12.489 28.98 30.832 6.389
2172.79 33.28 38.533 15.785 26.59 30.809 15.867

model and those measured stress data in Table 4, and the
magnitudes are ey =0.5717 and &, =0.2811, respectively.

5.3 Pore pressure within the Chang 7 reservoir

Based on measured pore pressure data from Li et al.
(2013) and Duan et al. (2014), the average pressure coef-
ficient within the Chang 7 reservoir ranges between 0.70
and 0.83. Therefore, currently, the Yanchang Formation
Chang 7 shale oil reservoir of Ordos Basin experiences
the abnormally low pressure.

6 Stress distribution within the Chang 7
shale reservoir

6.1 Vertical distribution of present-day in situ
stresses

Based on the combined spring model for Chang 7 reservoir
in this study, error analysis is carried out in this study,
and results indicate that the errors between measured and
predicted Sy.. and Sy, are generally less than 15% with
the majority lower than 10% (Table 4).

@ Springer
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Therefore, the one-dimensional mechanical earth model
can be conducted for the Chang 7 shale reservoir and the
vertical distribution of present-day in situ stresses is pre-
dicted (Fig. 5). Generally, within the Yanchang Formation
Chang 7 shale oil reservoir of Ordos Basin, the Sy,.¢0 Shmin
and S, magnitudes all increase with burial depth. Overall,
they follow the relationship S, > Symax = Shmin» 1Rdicating a
dominant normal faulting stress regime (Fig. 5). The results
are consistent with those actual stress measurements in the
southwestern parts of the studied region (Wang et al. 2014).

6.2 Lateral distribution of present-day in situ
stresses

In this study, totally, the vertical distribution of stress
magnitudes in the Chang 7 shale reservoir was conducted
and analyzed in 101 wells. In the following, the study area
is divided into 93 X 100 grids, and the average stress mag-
nitude of Syaxs Shmin @Rd S, for each grid is interpolated
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using the Kriging method based on stress values from
adjacent wells. Therefore, the lateral distribution of pre-
sent-day stresses within the Yanchang Formation Chang
7, Chang 7, and Chang 7, sublayer can be obtained and
analyzed (Figs. 6, 7 and 8).

The Sy,.x magnitude varies in the interval of
26-46 MPa, 27-46 MPa and 24-47 MPa within the
Chang 7,, Chang 7, and Chang 7 sublayer, respectively
(Figs. 6, 7 and 8). The §},,,;, magnitude ranges 21-38 MPa,
22-40 MPa and 21-43 MPa in the Chang 7, Chang 7,
and Chang 7; sublayer, respectively (Figs. 6, 7 and 8).
The §, magnitude indicates 22—-62 MPa, 24-64 MPa and
24—-64 MPa within the Chang 7,, Chang 7, and Chang 7,
sublayer, respectively (Figs. 6, 7 and 8). Generally, stress
distributions in all three sublayers of Yanchang Formation
Chang 7 shale oil reservoir indicate similar characteristics
with higher and lower stress values located in the north-
western and southeastern regions of the studied region
(Figs. 6, 7 and 8).
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Fig.7 Lateral distribution of present-day in situ stress magnitudes within the Yanchang Formation Chang 7, sublayer of Ordos Basin. a Sy, b
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7 Discussions
7.1 Factors influencing stress distribution

The factor of burial depth indicates an important control
on present-day in situ stress distribution. In this study, the
relationship between stress magnitude in top Chang 7,,
Chang 7, and Chang 7 sublayer and the corresponding
burial depth is conducted to analyze the effect of burial
depth on stress distribution (Fig. 9). Obviously, for the

Yanchang Formation Chang 7 shale oil reservoir of Ordos
Basin, both the Sy, and S, magnitudes show the linear
relationships with burial depth (Eqgs. 9 and 10).

Shmax = 0.0117h + 152490 R* = 0.8997 )

Symin = 0.0107h + 11.4290 R* = 0.8147 (10)

where Sy, and Sy ., are the horizontal maximum and min-
imum principal stress, respectively, & indicates the burial
depth, and R is the correlation coefficient.
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Fig. 9 The relationship between present-day in situ stress magnitudes and burial depth within the Yanchang Formation Chang 7 shale oil reser-

voir of Ordos Basin

The studied region of Ordos Basin is a tectonically sta-
ble area; hence, the stress distribution is largely controlled
by lithological changes (rock mechanics) due to the lack
of faults and folds (Zoback et al. 2003; Zhou et al. 2007,
Ju et al. 2015). Therefore, in this study, the relationship
between rock Young’s modulus and stress magnitude is ana-
lyzed to understand rock mechanics on stress distribution.
The selected data for analysis are mainly from Wells Zul31,
Zull5, Y410, Y296 and Y297 because these wells have both
measured and predicted stress magnitudes. In addition, to
avoid the effect of burial depth and Poisson’s ratio on the
results, the Poisson’s ratio is fixed within a small scale rang-
ing between 0.200 and 0.205. The burial depth for selected

@ Springer

data is divided into two segments: 1533.25-1783.75 m and
2187.00-2351.25 m.

The results indicate that stress magnitudes increase with
Young’s modulus (Fig. 10), suggesting that rock Young’s
modulus exhibits a significant effect on stress transfer
through the reservoir and that the stiffer rocks commonly
conveyed higher stress magnitudes. In addition, the dif-
ferential stress between Sy, and Sy, 1S an important
parameter in hydraulic fracturing. Low differential stress
can commonly produce a complex hydraulic fracture sys-
tem (Zhou et al. 2007; Ju et al. 2018). Obviously, the hori-
zontal differential stress becomes higher with the increase
in Young’s modulus in the Yanchang Formation Chang 7
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reservoir (Fig. 10); hence, relatively high Young’s modulus
will result in simple hydraulic fracture systems.

7.2 Vertical stress pattern

The magnitudes of in situ stress vary greatly with burial
depth in the Yanchang Formation Chang 7 reservoir (Fig. 5),
which is mainly caused by the difference in rock mechanics
parameters, especially the Young’s modulus. Based on Zhou
et al. (2007), there are mainly five types of vertical stress
patterns (A-E), all of which are present in the Chang 7 shale
oil reservoir of Ordos Basin (Fig. 5):

Type A: high-low-high (HLH). Stress magnitudes in the
roof and floor layers are much higher than those in the target
fracturing layer. Vertical propagation of hydraulic fractures
in this stress pattern will be largely limited due to the rela-
tively high stress difference between layers.

Type B: low—low-high (LLH). Stress magnitudes in the
roof and target fracturing layers are generally close to each
other, but are lower than those in the floor layer. The upward
propagation of hydraulic fractures is easily in this pattern.

Type C: high-low-low (HLL). Stress magnitudes in
the floor and target fracturing layers are generally close to
each other, but are lower than those in the roof layer. The
downward propagation of hydraulic fractures is easily in this
pattern.

Type D: interbedded. Stress magnitudes change fre-
quently in all layers. Hydraulic fractures can propagate both
upward and downward.

Type E: uniform. Stress magnitudes are generally
unchanged in all layers. Hydraulic fractures can also propa-
gate both upward and downward.

Vertical stress pattern is critical for understanding the
vertical propagation of hydraulic fractures in layered media.
Therefore, with accurate assessments of vertical stress

pattern, the scale of hydraulic fracturing and the develop-
ment of well network can be determined rationally (Feng
et al. 2019).

8 Conclusions

In this study, the present-day in situ stress distribution within
the Yanchang Formation Chang 7 shale oil reservoir is pre-
dicted based on well logs calibrated with measured data
using the combined spring model. The effects of burial depth
and Young’s modulus on stress distribution are also ana-
lyzed. The results in this study are expected to provide some
new geological references for the exploration and develop-
ment of shale oil within the Yanchang Formation Chang 7
oil-bearing layer of the Ordos Basin.

Generally, the following results and conclusions can be
obtained:

1. In this study, a one-dimensional mechanical earth model
is conducted, and the results indicate that the Sy,
Shmin and S, magnitudes all increase with burial depth,
and a dominant normal faulting stress regime is in the
Yanchang Formation Chang 7 shale oil reservoir of
Ordos Basin.

2. Inthe studied region, relatively high and low present-day
stress magnitudes are distributed in the northwestern and
southeastern regions, respectively.

3. The factor of burial depth indicates a linear relation-
ship with burial depth; a larger burial depth results in a
higher stress magnitude.

4. Rock Young’s modulus shows a great effect on the
present-day stress distribution. Larger Young’s mod-
uli produce higher stress magnitudes. In addition, the
horizontal differential stress will become higher with

@ Springer
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the increase in Young’s modulus, resulting in simple
hydraulic fracture systems.
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