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Abstract In petroleum engineering, the transport phe-
nomenon of proppants in a fracture caused by hydraulic
fracturing is captured by hyperbolic partial differential
equations (PDEs). The solution of this kind of PDEs may
encounter smooth transitions, or there can be large gradi-
ents of the field variables. The numerical challenge posed
in a shock situation is that high-order finite difference
schemes lead to significant oscillations in the vicinity of
shocks despite that such schemes result in higher accuracy
in smooth regions. On the other hand, first-order methods
provide monotonic solution convergences near the shocks,
while giving poorer accuracy in the smooth regions.
Accurate numerical simulation of such systems is a chal-
lenging task using conventional numerical methods. In this
paper, we investigate several shock-capturing schemes.
The competency of each scheme was tested against one-
dimensional benchmark problems as well as published
numerical experiments. The numerical results have shown
good performance of high-resolution finite volume meth-
ods in capturing shocks by resolving discontinuities while
maintaining accuracy in the smooth regions. These
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methods along with Godunov splitting are applied to model
proppant transport in fractures. It is concluded that the
proposed scheme produces non-oscillatory and accurate
results in obtaining a solution for proppant transport
problems.

Keywords Proppant transport - Hyperbolic partial
differential equations - Frac pack - Hydraulic fracturing

1 Introduction

It is well known that the hyperbolic partial differential
equations (PDEs) accept both smooth and discontinuous
solutions. A discontinuous solution, also referred to as a
shock, is characterized by large gradients in the variables
such as velocity, density (concentration), depth or pressure.
Even with smooth initial conditions, discontinuities may
develop with time (Chen 2006). In this paper, various
methods of solving hyperbolic equations are investigated
with the purpose of applying the best shock-capturing
scheme to the proppant transport problem. To achieve this,
some of the available shock-capturing techniques were
employed in solving benchmark test problems and com-
paring the results. From a mathematical point of view,
proppant transport equations are time-dependent, nonlinear
hyperbolic PDEs. These kinds of PDEs are based on con-
servation laws and have applications in many engineering
problems (LeVeque 2004).

The primary focus of this work is the modeling of
proppant transport by solving the advection equation.
Therefore, it is necessary to present a literature review on
previous numerical proppant transport modeling. In the
simplest form of the proppant transport models, such as
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those proposed by Daneshy (1978) and Novotny (1977), a
vertical fracture is assumed and discretized into slim ver-
tical sections (columns). Treatment time is also divided
into small time increments. At each time increment, the
fluid loss, the increase in sand concentration, the sand
settling velocity, the volume and height of the deposited
sand, and the height of the sand in suspension are computed
based on the mass balance of different phases. These
models, which also use an experimental correlation for the
settling velocity of proppants, are called simplified models
of proppant transport. They do not numerically solve the
hyperbolic partial differential equation of proppant trans-
port and are limited to planar vertical fractures.

In the next generation of proppant transport models,
mixture-type models were developed to overcome the
restrictions of the simplified models. In the original model,
several assumptions were made regarding the proppant
condition inside the fracture. The proppant and carrying
fluid velocities were assumed to be the same. In other
words, it was assumed that no momentum transfer occurred
between the carrying fluid and the granular phase. Also, no
dispersion of proppant particles was considered; thus, the
front of the proppant concentration profile remained sharp
(Adachi et al. 2007). An essential element of these models
is the averaging of the field variables, such as the particle
volume fraction and the fluid velocity, in the direction
perpendicular to the fracture walls. This assumption was
the result of avoiding high computational cost of dis-
cretization across the width of the fracture. Although we
did not try to resolve this issue, the method of dimensional
splitting presented in this paper can be used for capturing
the variations along the fracture width.

Many modifications have been made in the original
mixture models by different researchers to improve the
simulation techniques for the transport phenomena. Settari
et al. (1990) were the first to propose the concept of par-
tially decoupled fracture modeling. They linked a fracture
simulator, a fluid flow simulator and a proppant simulator
together and mapped the fracture geometry and proppant
concentration in terms of permeability and porosity onto
the reservoir simulator grids. To better capture the dis-
continuous front of proppants inside the fracture, Settari
et al. (1990) used a finer finite difference grid (finer than
the grids used in the fracture and fluid flow modules) for
solving the one-dimensional PDE of the proppant transport
model. Later, several researchers used this approach in
their numerical simulation of proppant transport. Behr et al.
(2006), Shaoul et al. (2007) and Miranda et al. (2010)
linked a commercial reservoir simulator to a commercial
fracture and proppant simulator and used the same concept
that Settari et al. (1990) had used for frac pack analysis.
Although the linking of proppant and fracture simulators
was novel, the proppant transport in these works was not
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numerically modeled by solving the mass balance hyper-
bolic PDE.

Later other models have been proposed to simulate
proppant transport numerically (Friehauf 2009; Gadde
et al. 2004; Liu 2006; Ouyang 1994; Sharma and Gadde
2005). The main focus of these models was simulating
transport in multi-phase and multi-component slurries.
Ouyang (1994) proposed an adaptive meshing technique in
the hydraulic fracture simulation that was combined with
the fully decoupled models developed by Ribeiro (2013)
for proppant injection simulations. Little attention was
given to the efficiency of the numerical scheme in solving
the proppant transport equations. Gadde et al. (2004), Liu
and Sharama (2005), Liu (2006) and Friehauf (2009) used
the Perkins—Kern—Nordgren (PKN) fracture geometry and
included some of the experimental works in the literature
related to proppant transport in their numerical model. The
finite difference scheme was employed to solve the trans-
port equation similarly with little attention to the efficiency
of the numerical scheme used.

In this research, different shock-capturing schemes have
been investigated for solving 1-D and 2-D proppant
transport equations. For 2-D equations, the operator split-
ting technique is employed for the treatment of the source
terms and the multi-dimensionality of the problem. The
high-resolution method of finite volume is applied through
the application of flux limiters to solve the transport
equations. Although such schemes slightly increase the
computational complexity, they can achieve comparable
results with a coarser spatial resolution (LeVeque 2004).
These schemes have demonstrated very promising shock-
capturing capabilities since they can achieve good accuracy
while avoid spurious oscillations.

2 Theory and governing equations of slurry
proppant transport

The process of transport of material can be captured by a
system of hyperbolic partial differential equations. The
general one-dimensional form of these conservation laws
can be written as:

oqg Of

e + e 0 (1)
where ¢ is time, x is the horizontal coordinate, g is the
conserved variable to be advected (e.g., in proppant
transport we will see that it is concentration multiplied by
the width of the fracture) and f is the flux vector. (In
proppant transport, it is velocity multiplied by concentra-
tion multiplied by width of the fracture.) In many appli-
cations, the flux vector f can be defined as:
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where u is the velocity of propagation. With this definition, Qi = Ax / q(x, 1,)dx (8)
the conservation form of the hyperbolic equation reduces to x—i

an advection form:

O, Oua) _ (3)
ot Ox

This form of advection equation in proppant transport
problem is nonlinear since the velocity of proppant changes
with space and time. Therefore, special techniques suit-
able for nonlinear hyperbolic problems must be utilized.
However, if we assume that we are dealing with an
incompressible fluid, a major simplification can be made.
For incompressible fluids in 1-D, from continuity equation
one can write:

u, =0 (4)

This equation is equivalent to the conservation of mass
and states that the velocity (rate) of the material conserved
is the same in each section. Then Eq. (3) can be expanded
as:

dq dq Ou

4 e — =0 5

o M T ®)
Applying the continuity equation, we obtain:

g Jq

i 4 Z_0 6

o Mo (6)

This form of the advection equation is linear and is
relatively easier to deal with (LeVeque 2004). In solving
this kind of hyperbolic PDEs, different capturing schemes
have been developed which can be classified as classical or
traditional and modern techniques.

In the traditional techniques, the finite difference
method is employed, while in the modern techniques, the
finite volume method (which for rectangular grids can be
viewed as a generalization of the finite difference method)
is used. Here, we briefly present the finite volume dis-
cretization of the hyperbolic equations presented above.

In the finite volume method, the integral form of the
partial differential equations is developed. In one-dimen-
sional space, the finite volume discretization of Eq. (1) is:
o = oL (k- ) ™)
where Q and F which are defined in Egs. (8) and (9) are
numerical solution to the PDE and numerical flux,
respectively. All the terms in the above discretization are
average values of the variables over the ith interval and at
time ¢, or f,,1, €.2.,

nt1

Frym g, [ (i) ©)

tn

Any numerical method for solving hyperbolic equations
depends on the choice of F, which is called the numerical
flux function.

Since the solution of this kind of PDE may involve
shocks in the solution, shock-capturing methods with the
ability of tracking discontinuities and maintaining accuracy
and stability in smooth regions have been developed
(LeVeque 2004). In the next section, a review of the con-
ventional finite difference methods and recent shock-cap-
turing methods is provided. Our approach should not be
confused with shock tracking or front tracking methods in
which a combination of the finite difference or finite vol-
ume methods (in smooth regions) with an explicit method
of tracking the location of discontinuity is employed. The
goal of shock-capturing methods is to automatically cap-
ture discontinuities in the solution, without having to
explicitly track them (Davis 1992).

3 Review of numerical methods in solving
hyperbolic PDEs

In solving the hyperbolic equations, traditional finite dif-
ference methods generate either non-physical oscillations
or numerical diffusion in the presence of shocks (LeVeque
2004). This large error in the solution technique was the
motivation behind the development of shock-capturing
schemes. In this section, we review some of the most
important techniques in solving the first-order hyperbolic
problems and apply them in a numerical experiment to
investigate the capability of each method.

3.1 First-order finite difference schemes

First- or second-order finite difference methods have been
traditionally used in capturing shocks. A very important
family of the first-order schemes is the upwind methods,
and the most popular upwind method is the Godunov
scheme (Fennema and Chaudhry 1987). The direction of
propagation of information (or waves) in this method is
consistent with the spatial derivative discretization.
Upwind schemes can cause strong diffusion and significant
smearing in the solutions. In addition, the numerical
method becomes very complex for nonlinear problems.
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The Godunov scheme leads to finding the solution of a
problem called the Riemann problem. An exact or
approximate Riemann solver is required to solve the Rie-
mann problem. An exact solver requires a high computa-
tional cost (Godunov 1959). Therefore, most numerical
methods use approximate solvers (Engquist and Osher
1981; Harten et al. 1983; Roe 1981). The characteristics of
the Jacobian matrix of the system construct the solution to
the Riemann problem. Among approximate solvers, the
Osher scheme (Engquist and Osher 1981) uses the signs of
the eigenvalues to find the direction of the flux. On the
other hand, the Roe scheme (Steger and Warming 1981)
(flux difference splitting scheme) uses an average of the
state variables calculated from either side of the Riemann
interfacial values and approximates the Jacobian matrix.
There are other approximate Riemann solvers such as
Harten et al. (1983) and HHLC (Steger and Warming
1981). The details of these methods can be found else-
where. In this paper, we have used the Godunov scheme in
calculating the flux.

Besides the upwind methods, the Lax method is another
popular first-order scheme. The centered difference dis-
cretization of the advection equation is unconditionally
unstable. In the Lax or Lax—Friedrichs scheme (Lax 1954),
the central difference scheme is stabilized by replacing the
Q7 term with the average 0.5(Q%,, + Q7 ;) term in the
discretization. The Lax method is known for its large dis-
sipation error when the Courant number is not 1 and pro-
duces a leading phase error (Pletcher et al. 2012).

3.2 Higher-order finite difference schemes

In most cases, first-order schemes are not employed to
solve PDEs due to their intrinsic inaccuracy. Higher-order
shock-capturing techniques are utilized to obtain better
accuracy. The Lax—Wendroff scheme (Lax and Wendroff
1960), which is one of the earliest second-order finite dif-
ference schemes, can be obtained from the Taylor series
expansion. The Lax—Wendroff scheme has predominantly
lagging phase error except for large wave numbers with
0.5<v<1, where v is the Courant number. It is second-
order accurate in both space and time.

There is another version of the Lax—Wendroff scheme,
which is called the Richtmyer two-step Lax—Wendroff.
This scheme is more suitable for nonlinear problems. It is
second-order accurate with the same amplification factor
and relative phase shift error as the original Lax—Wendroff.
In the first step of this scheme, a Lax—Friedrichs scheme is
applied at the midpoint for the half time step. For the
remainder of the time step, a leap-frog scheme is applied.
The Lax—Wendroff and two-step Lax—Wendroff schemes
are equivalent when applied to linear advection equations.
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The MacCormack method (Wesseling 2001) is a modi-
fied form of the two-step Lax—Wendroff scheme in which a
temporary value of Q7" is calculated in the first step and is
corrected in the second step. In the predictor equation, a
forward difference for the space derivative is employed,
while in the corrector equation a backward difference is
used. The differencing scheme can be reversed, depending
on the problem at hand.

The Beam-Warming scheme (Beam and Warming
1978) is a variation of the MacCormack method, which
uses the same differencing in the predictor and corrector
steps, depending on the sign of the velocity. This scheme,
which is a second-order upwind scheme, has a predomi-
nantly leading phase error for 0 <v<1 and predominantly
lagging phase error for 1 <v<2. On the other hand, the
Lax—Wendroff method has opposite phase errors for
O0<v<]1. Therefore, a linear combination of the two
methods can reduce the dispersive error of the scheme.
Fromm’s method of zero-average phase error (Wesseling
2001) is based on this observation.

There are a small number of third-order methods in the
literature. Rusanov (1970) and Burstein and Mirin (1970),
Warming et al. (1973) or tuned methods are among the
famous schemes (Wesseling 2001) which we do not
describe here.

High-order finite difference schemes are non-dissipative
with good accuracy near the smooth regions. However,
they are prone to generating spurious oscillations across
discontinuities or in the vicinity of large gradients in the
solution (LeVeque 2004). If the numerical oscillation
becomes large, then the numerical methods become inef-
ficient capturing an accurate solution.

3.3 Artificial viscosity

The Lax—Friedrichs, Lax—Wendroff and MacCormack
methods belong to a class of solution methods that use
artificial viscosity. This property is employed to introduce
enough dissipation near discontinuities to smear oscilla-
tions (Fig. 1). The amount of this artificial viscosity should
be negligible close to smooth regions (Fennema and
Chaudhry 1990).

However, the difficulty with this approach is that it is
hard to determine the amount of dissipation needed without
causing unnecessary smearing. For this reason, the high-
resolution methods were developed.

3.4 High-resolution methods
In the past decade, attempts have been made to devise a

method that can combine the monotone feature of first-
order methods with the high accuracy of higher-order
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Fig. 1 a Comparison of the MacCormack method result with the exact solution showing numerical distortion. b Comparison of the Lax method

result with the exact solution showing numerical distortion dissipation

methods. This was achieved through high-resolution
methods which are at least second-order accurate in smooth
regions and non-oscillatory at discontinuities (LeVeque
2004). A measure of the oscillation is the total variation
which is given by:

+00
vQ) =Y |0 -0,

i=—00

(10)

where TV is total variation.

It is obvious that in this definition more oscillations will
give rise to more total variations. Therefore, to avoid
oscillations it is necessary that the total variation decreases
with time. Any numerical scheme that has this capability is
called a total variation diminishing (TVD) scheme. In flux
limiter schemes, limiters are imposed on the numerical flux
function such that higher-order schemes are used in smooth
regions, while lower-order schemes are employed close to
the discontinuity. This combination can be achieved
through:

Fiy = Fu(Qi, Qi) + &1 [Fu(Qi, Qivr) — FL(Qi; Qi)
(11)

where F denotes the lower-order flux function and Fy
denotes the higher-order flux function; ¢, is called the
2

flux limiter which will be near zero closer to the discon-
tinuities and around 1 close to the smooth data.

The definition of the limiter leads to a wide variety of
other methods of this form. The flux-corrected transport
(FCT) scheme of Boris and Book (1973) is one of the
earliest limiter applications. Other popular choices of
limiters include the superbee limiter (Roe 1985), van Leer
limiter (van Leer 1977), Woodward limiter (Colella 1985),
Minmod limiter (Colella 1985) and the monotone

upstream-centered scheme for conservation laws (MUSCL)
by van Leer (Colella 1985).

3.5 Dimensional splitting

Dimensional splitting is a type of fractional step method
which can be used to transform a PDE with a source term
to a homogeneous, ordinary differential equation. The two
subproblems can be solved independently, with any
scheme for each subproblem. It can also be applied in
converting a multi-dimensional problem into several one-
dimensional problems. The advection equation in 2-D with
a source term can be written as:

0q

o uley) g e = (12)

Ox
where u and v are velocities in the x and y directions and
Y(x) is a source term. In proppant injection applications,
the source term is the injection rate of proppants. Now,
applying dimensional splitting to Eq. (12), we obtain:

0q

Wy (13)
Oq oq
§+u(x,y)a—0 (14)
g 0q
a—#v(x,y)a—o (15)

Equation (13) is an ordinary differential equation (ODE)
and can be integrated using standard methods for solving
ODEs (e.g., Euler or Runge—Kutta methods). In the next
step, the high-resolution methods can be applied to
Egs. (14) and (15) without change to advect the solution.

@ Springer
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This method can also be used to discretize the fracture
along the width direction without generating elements with
high aspect ratios.

3.6 Benchmark test to evaluate different solution
techniques

To test the capability of the capturing techniques discussed
here, we consider a 1-D linear advection equation [Eq. (3)]
with unit velocity (Garcia-Navarro and Vazquez-Cendon
2000).
dqg 0O
% % _
ot Ox

For the initial condition of our numerical experiment,
we consider a combination of a Gaussian wave, a square
wave, a sharp triangle and a half ellipse:

q(x,0) = go(x)

—1l<x<l1

(16)

(17)

(G(xa ﬁaz - 5) + G()C, ﬁaz + 5) +4G()C, ﬁv Z))v

— [10(x — 0.1)],
(H(x,0,a — 0) + H(x,o,a + 9) + 4H (x, o, a)),

O — = =N —

~—

log(2

— 07, osts)
¢ 3607

=10

5=0005, f= a=05 o)

The exact solution of this problem is the translation of
the initial solution at unit speed:

q(x,1) = qo(x — 1) (22)

Figure 2 shows a schematic of the initial condition.

We used a periodic boundary condition on the left and
right sides of the model and ran the simulation for 2 s. For
this model problem, we assigned a Courant number of 0.9
for all the schemes.

Figure 3 shows that the first-order upwind and Lax—
Friedrichs methods are monotone everywhere. In other
words, they do not lead to oscillations anywhere in the
solution. However, they have poor accuracy due to large
dissipation.

—0.8<x< —-0.6

—04<x<-02

0<x<0.2 (18)
04<x<0.6

otherwise

The functions G and H are defined as:

Glx,f.2) = e M

H(x,o,a) = \/max(l — o2 (x — a)z),O

Also we set:

0.8 B

06 B

04 1

q (Conserved quantity)

02 4

-06 -04 -02 0 02 04 06 08 10
Location along the model domain, m

0
-1.0 -0.8

Fig. 2 Numerical experiment with Gaussian, square, sharp triangle,
and half ellipse initial waves
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On the other hand, Fig. 4 shows that the high-order
methods provide good accuracy in smooth regions, while
giving oscillations close to discontinuities. The oscillations
happening in the vicinity of the discontinuity show the
dispersive nature of these methods.

Figure 5 presents the results of the simulations with
high-resolution methods. It is obvious that the first-order
schemes show no oscillation and good accuracy is obtained
in the higher-order schemes.

4 Application of the proposed technique
to proppant transport problems

To provide a numerical solution for the proppant transport
partial differential equation, we applied a simple iteration
approach (Ertekin et al. 2001). The partial differential
equation that we obtained in the previous section is non-
linear, meaning that the coefficients of the equation depend
on the unknown. It is true for the proppant mass balance
equation. At each time step, the transport problem is
divided into three parts:



Pet. Sci. (2017) 14:731-745

737

0.8

0.4

Q (Conserved quantity)

02

T T
----- Upwind method
— Exact solution

0 = e e
-10 -08 -06 -04 -02 O

02 04 06 08 10
Location along the model domain, m

—_

O

~
N
N

-
o
T

o
)
T

Q (Conserved quantity)
o o
= [}

o
[N
T

T T
----- Lax-Friedrichs
— Exact solution

-10 -08 -06 -04 -02 0

02 04 06 08 10
Location along the model domain, m

Fig. 3 Results of first-order schemes after 2 s, upwind (left) and Lax—Friedrichs (right), monotonic without oscillation

—_
Q
~

o o o = =
IS o © o N
T T T T T

Q (Conserved quantity)
o
o

T T T T T T T T
----- Two-step Lax-Wendroff method -
— Exact solution

-06 -04 -02 0 02 04 06 08 10
Location along the model domain, m

12

1.0

04

02 r

T T T T T T T T
""" Beam-Warming method -
— Exact solution

Q (Conserved quantity)

¥

-0.8

-06 -04 -02 0 02 04 06 08 10
Location along the model domain, m

06

04

02

Q (Conserved quantity)

T T u T T T ! !
e MacCormack method
— Exact solution

(d)

-06 -04 -02 0 02 04 06 08 10
Location along the model domain, m

06

04

02

Q (Conserved quantity)

T T
----- Fromm method
—Exact solution

-0.8

-06 -04 -02 0 02 04 06 08 10
Location along the model domain, m

Fig. 4 Results of second-order schemes after 2 s, accurate in smooth regions, oscillatory near shocks

ey

First, we calculate the coefficients of the slurry mass

balance equation at the previous time step (at time
level n) or at the previous iteration level, k. We solve

for the pressure field using the viscosity, density and
width obtained from the previous time step (or the
initial conditions for the first time step).
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Input data

[Start a new step, ,, calculate viscosity, density, and Width |« ---mm-mmeemm

{ Beginning of iterations, k|

[Solve the slurry mass equation, obtain pressure field |

wk No

Convergence:
Kl _ pk< &

[ Calculate the velocity of proppant |

| Solve proppant mass balance |

. Convergence: No
[ Go to the next time step W —wh<eg,
ck+1_ck<£3 Ck’pk
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(2) Next, we calculate the velocity of the proppant,
using the pressure field calculated in the previous
time step.

(3) Finally, we apply a finite volume method to advect
the concentration of proppant.

We iterate on the solution until convergence is achieved.
Figure 6 shows the coupling between the slurry and
proppant mass balance solvers.

4.1 Proppant and slurry mass balance (continuity
equation)

A continuity equation is basically a statement based on the
conservation of mass. In the proppant transport context,
two mass conservation equations are required for the slurry
which consists of proppant and injection fluid. The
derivation of these balance equations can be found else-
where (Barree and Conway 1995), and here, we only
mention these conservation equations.
For the proppant:

0 0 )
o (ppcw) + i (ppupcw) + > (ppvpcw) +ecginj =0 (23)

For the injection fluid:

0

0
a(ﬂf(l —c)w) T
+ (1 - C)‘]inj

=0

@wu—@m+%@mu—@m

(24)

where w is the fracture width; c is the volumetric proppant
concentration defined as the ratio of proppant volume to
slurry volume; u, and ur are horizontal velocities of
proppant and fluid; v, and v; are vertical velocities of
proppant and fluid; p, and p; are proppant and fluid den-
sities; and gy is the slurry injection flow rate.

For the binary system of proppant flow, Bird et al.
(1960) applied Fick’s law of mass diffusion and included a
diffusion term in the above mass balance equation of the
form:

J = V(pwDyVw,) (25)

where J is the diffusion flux, p is the slurry density; Dy is
the diffusivity coefficient; and w, is the mass fraction of
the proppant which is defined as:

cpp
w, = — 26
=, (26)

The diffusivity can be broken into the following three
terms:

Dy = Dy’ + Dyt + Dy (27)

The term Dg‘fo is the diffusion associated with the
molecular movement, Dg‘f with the turbulent flow and Dg’f
with the temperature gradient. The diffusion associated with
molecular movement is usually very small in the slurry
injection problem. Also, assumptions are made that the flow
of frac fluid is laminar and that the entire field is in a constant
temperature field. For these reasons, the diffusive term has
been dropped from the mass balance equation.

If we eliminate the density terms in Egs. (23) and (24)
and add them together, we can obtain the mass balance
equation for the slurry:

ow 0 0
E + a (M51W) + a—y (V51W) + 4inj = 0 (28)
where ug and vg are the horizontal and vertical velocities

of the slurry defined as:

ug = cup + (1 — c)us (29)
va = cvp + (1 — )y (30)
4.2 Conservation form versus advection form

for proppant transport

There are several forms that a variable-coefficient hyper-
bolic partial differential equation might take, each of which
arises depending on the context. The numerical solution
technique may depend on the form of the PDE. The
hyperbolic proppant transport equation [Eq. (1)] is written
in the advection form by extending the space derivatives:

0 0 0 0
3 (ppew) + Poltp 5 (cw) + cwa (Ppttp) + Ppvp > (cw)

0
+ cwa (ppvp) + Cqinj
=0

(31)

Since the proppant density is assumed to be constant under
the flow conditions, by eliminating p, we obtain:

0 0 0 0

o (ew) + up i (ew) + wa (up) +vp & (ew)

; (32)

+ CW@ (Vp) =+ qunj = 0

By factoring out the term cw, a familiar form of continuity
equation appears:

0 0 0
7 (09) Tt (W) + v (o)

(33)
0 0
+tow [@C (up) + o (Vp)} + ¢qinj =0

However, we know that for an incompressible fluid, due to
the continuity equation the term in the brackets will be
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Fig. 7 Model domain and applied boundary conditions to slurry and proppant transport equations

Grid: 90 by 90

Concentration
6

£ 05
5
D 0.4
ey
2
IS 0.3
©
c
2 0.2
®
(&}
o
- 0.1

) 0
0 05 10 15 20 25 30 35 40 45 50
Location along length, m
Fig. 8 Proppant concentration after 5 s of injection
0.35 T T T T T T T T T

= Grid
8 o3 —10by 10 -
g om0
2z L —30by30 |
s 0.25 ——40 by 40
= —50 by 50
S o020 —60by60 -
c —70by 70
3 | —80by80 |
S 0.15 —90 by 90
o
€ L i
S o0.10
Q.
Q.
DQ_ 0.05 1

0 L L L L . L L
0 0.5 1.0 1.5 2.0 25 3.0 35 4.0 4.5 5.0

Location along a horizontal profile in the
middle of the model, m

Fig. 9 Mesh sensitivity results of concentration along the horizontal
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zero. Therefore, the advection form of the proppant trans-
port equation will be:

0 0 0
7 (€9) g (ew) vy 5 () + gy = 0 (34)

This form of equation will require a simpler form of high-
resolution methods.
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4.3 Analytical solution of the Navier—Stokes
equation: cubic law

The Navier—Stokes equation describes the motion of a fluid
as a relationship between flow velocity (or momentum) and
pressure. It is also called the momentum conservation
equation. The momentum conservation law states that the
forces acting on a small element of fluid accelerate that
element. This equation is equivalent to Newton’s second
law of motion.

In hydraulic fracturing applications, an analytical solu-
tion to the Navier—Stokes equation is used for the fluid flow
inside the fractures. This solution is called the cubic law
(Economides and Nolte 2000):

w? Op
= ——= 35
B DY (35)
Similarly, for the y direction:
w? 3(p — pgy)
=7 36
il 12u Qy (36)

where p is pressure; g is acceleration due to gravity; and u
is viscosity.

Now, if we substitute Egs. (35) and (36) into the slurry
mass balance, Eq. (28), we obtain:

o (wop o (W o(p— pgy) ow
) o () =g @)

In this equation, the viscosity and density depend on the
concentration and the fracture width is also non-constant.
Therefore, we are dealing with a nonlinear partial differ-
ential equation and we need a suitable technique to lin-
earize our PDE.

S Simulation example

Our transport model consists of coupling mass balance of
slurry and proppant. The slurry mass balance equation is an
elliptic PDE and is solved by an implicit method, and the
shock-capturing methods discussed earlier are not applied
to solve this PDE. We applied different shock-capturing
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Fig. 10)

techniques to the 2-D proppant transport problem in a fixed
slot to examine their performance with respect to accuracy
and spurious oscillations. We developed our 2-D models
through the application of dimensional splitting. Finally,
we presented the result of proppant injection into the fixed

slot using the best-performing numerical technique until
the whole fracture was filled up with proppants.

We applied Godunov dimensional splitting as explained
in Sect. 3.5 to this 2-D problem. It is also noted that the
temporal term in Eq. (34) will become zero for this prob-
lem since the width of the opening is constant.

5.1 Model specifications

The model domain is a 5 m by 5 m by 0.0061 m slot.
Figure 7 shows the domain and applied boundary condi-
tions. The slurry injection was assigned a rate of
0.01325 m*/s with 0.3 (dimensionless) proppant concen-
tration at the left boundary (inlet). Top, bottom and right
boundaries were assigned zero proppant flux. Fluid was
assigned zero pressure at the right boundary but was not
allowed to exit from the top and bottom boundaries.

In proppant transport problems, the concentration can
vary between 0 and a value that is called saturation con-
centration. The saturation concentration corresponds to the
maximum solid concentration in a slurry. For regular
spheres, the saturation concentration corresponds
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Fig. 12 Concentration profiles during injection at 2-12 s

theoretically to a random packing. For real material, it can
be determined experimentally and depends on the type of
the proppant and varies between 0.52 (loose packing) and
0.65 (dense packing). We assigned a value of 0.6 to this
parameter in the simulations. As the solid loading increa-
ses, the viscosity of the slurry changes. We assumed the
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Location along length, m

increase in viscosity follows a trend according to (Barree
and Conway 1994):

M:

1_C

o

Ho

W

(38)
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where ¢* is the saturation concentration and y is the initial Voo — 8\Pp — Pt)dp o359 (39)
set —

viscosity of the clean fluid that was water in our case with a
density of 1000 kg/m?.

Also it was assumed that particles settle in accordance
with the corrected Stokes equation (Stokes 1850) as pro-
posed by Govier and Aziz (1972) (mentioned in Barree and
Conway 1994):

18u

where Vg is the settling velocity of proppant particles and
d, is the proppant diameter.
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5.2 Mesh sensitivity

More accurate results can be obtained by using finer mesh
in the finite difference scheme. However, the solution and
computational time may become excessively large.
Therefore, there is a trade-off between the accuracy of a
refined model and the running time of the analysis and data
processing time. The purpose of mesh sensitivity analysis
in this section is to find an adequate, yet reasonable, mesh
size capable of giving good accuracy in a reasonable time.

For all the simulations of this part, the superbee flux
limiter was utilized. The number of the elements in the x
and y directions was varied from 10 by 10 grids to 90 by
90, in increments of 10. Figure 8 shows the concentration
map after 5 s of injection for the finest mesh. As shown in
the figure, we chose a cross section exactly in the middle of
the domain and plotted the concentration for different grid
sizes in Fig. 9.

Figure 9 shows that the resulting concentration curve
converges by reducing the mesh size. Since the difference
in the results between 60 by 60 and 90 by 90 grids is small,
we chose 60 by 60 grids for the rest of the simulations.

5.3 Simulation results

In this section, we present the result using the first-order
upwind, second-order Lax—Wendroff, superbee and van
Leer flux limiters method.

Figure 10 shows the proppant distribution in the model
after 8 s of injection. The oscillatory behavior of the high-
order Lax—Wendroff is apparent from the figure. The
upwind method in this figure shows a gradual decrease in
concentration at the front. Such behavior can happen only
if some diffusion exists in the original PDE, while, as we
discussed earlier in Sect. 4.1, we have neglected the dif-
fusion in the proppant balance equation. Therefore,
smearing of the result and poor capability of the solution
scheme in capturing the shock leads to this behavior. On
the other hand, the superbee and van Leer flux limiters not
only give non-oscillatory results, but also capture the shock
front with no smearing.

The oscillatory behavior of Lax—Wendroff and inaccu-
racy of the upwind method is more obvious in Fig. 11. In
this figure, we again plotted the concentration profile along
the horizontal section at the middle of the model. The
superbee limiter method is effectively capturing the shock
front, while the upwind and van Leer Limiter methods are
smearing the results near the shock front. The Lax—Wen-
droff method also results in spurious oscillations, which is
not desirable.

Figures 12 and 13 show the concentration maps at dif-
ferent times during the injection using the superbee flux
limiter as the numerical technique. We continued the
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simulation until the whole model was filled up with prop-
pant. The input data and model boundary conditions are the
same as previously described.

Due to much higher horizontal velocity of proppant
relative to its vertical velocity in the specified condition of
the simulation, little settlement is observed at the bottom of
the slot. However, a proppant bank is created at the dis-
charge part of the model. The bank grows with time in a
slightly asymmetrical manner due to the presence of a
small component of proppant vertical velocity.

6 Conclusions

(1) First-order finite difference schemes are always
monotonic preserving. However, they are not accu-
rate enough near smooth regions of solution.

(2)  Although higher-order finite difference schemes give
good accuracy in smooth regions, they produce
spurious oscillations near regions with high gradients
in the solution.

(3) High-resolution finite volume methods through the
application of flux limiters can be employed in
simulating proppant transport since they are always
non-oscillatory (total variation diminishing) near the
location with large gradients. These schemes also
produce accurate results in the smooth regions.

(4) The Godunov splitting technique is very effective in
simulating multi-dimensional problems. Applying
this method eliminates unnecessary complexity of
the un-split methods and makes modeling easier for
coding.
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