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Abstract Damage caused by people and organizations

unconnected with the pipeline management is a major risk

faced by pipelines, and its consequences can have a huge

impact. However, the present measures to monitor this

have major problems such as time delays, overlooking

threats, and false alarms. To overcome the disadvantages of

these methods, analysis of big location data from mobile

phone systems was applied to prevent third-party damage

to pipelines, and a third-party damage prevention system

was developed for pipelines including encryption mobile

phone data, data preprocessing, and extraction of charac-

teristic patterns. By applying this to natural gas pipelines, a

large amount of location data was collected for data feature

recognition and model analysis. Third-party illegal con-

struction and occupation activities were discovered in a

timely manner. This is important for preventing third-party

damage to pipelines.

Keywords Pipeline � Big location data � Third-party
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1 Introduction

The risk caused by third-party damage is an important issue

during the entire life of pipelines. During 2001–2015,

30%–40% of pipeline accidents in China were caused by

third-party damage. According to European accident

statistics, 52% of pipeline accidents in European were due

to third-party external damage during 1984–1992 (Dong

2015); 40.4% in the USA and Europe according to the

PHMAS latest statistics. Accidents caused by third-party

construction accounted for *20% in 1993–2010. More

than 702 leakage accidents occurred during 2010–2016,

and 177 of those accidents were caused by third-party

damage (external force or excavation by third party),

accounting for 25.21%.

Typical third-party accidents in China had a great

impact and caused huge economic losses. Several acci-

dents have been reported: On October 6, 2004, because of

mechanical failure, pipeline leakage occurred during

third-party construction on the Shaanxi–Beijing pipelines

in Shenmu Town, Yulin City, Shaanxi Province. On

December 30, 2009, the Lan-Zheng-Chang oil products

pipeline leaked because of third-party construction, lead-

ing to diesel fuel being spilt into the Weihe River. On

May 2, 2010, third-party construction caused pipeline

rupture on No. 223 pile of the East-Huang oil pipeline in

Jiulong Town, Jiaozhou City, leading to leakage of 240

tonnes of crude oil. On July 28, 2010, the propylene

pipeline in the Qixia District in Nanjing City exploded

because of third-party construction failure. More than 13

people were killed, 28 people were seriously injured, and

more than 100 people were slightly injured. On June 30,

2014, because of third-party unauthorized excavation, a

leakage accident occurred on 14# ? 700 m of Xingang–

Songgang pipe of Xin-Da pipeline, and the oil spilt into
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the municipal sewer network. On September 16, 2015, a

medium-pressure gas PE pipeline leaked due to the con-

struction in Xujiawan, Gansu Province, near the Lanya-

qinn River.

At present, pipeline patrol is the main measure for

monitoring third-party activities and preventing damage;

however, because these activities are hidden and random,

the patrol monitoring is not effective, especially for third-

party mining on pipelines. Illegal activities such as oil and

gas stealing are often carried out during the rest time of line

patrol officers. For fiber optic early warning and third-party

intrusion detection technologies with a high false alarm

rate, a large number of databases should be built. This is

because cable vibration caused by mining action on site is

used to determine third-party activities. However, many

similar activities take place, and it is difficult to accurately

determine damage. At the same time, some places have

different cable and pipeline trenches, thus limiting the

applicability of the technology.

Big location data (BLD) have been widely utilized.

BLD have become an important resource to observe

human community activity and analyze geographical

conditions. By analyzing the BLD of oil and gas transport

vehicles, human social attribute and relationship with the

environment can be extended from a simple positioning

data, and a type of intelligent and social application is

formed (Daggitt et al. 2016; Doornik and Hendry 2015;

Duan et al. 2014; Ettinger-Dietzel et al. 2016; Hashem

et al. 2016; Narayanan and Cherukuri 2016; Teli et al.

2016; Tsou 2015).

IBM used mobile phone signals and a signal tower to

locate the specific personnel, thus timely accessing the

information as to whether the specific personnel came to

the region, and established models to perform complex

analyses. Then, some information related to the specific

personnel was obtained, including the mobile phone

behavior of people together with their location, to deter-

mine future behavior and help to analyze their movement

(Hashem et al. 2016).

Inspired by the above analysis, big location data were

used to help prevent third-party damage in this study and to

solve the problems in the current third-party damage

identification such as real-time deficiencies and small

monitoring scope. By establishing the location relationship

between a specific cell phone signal and signal towers

along the pipeline and obtaining the mobile phone GPS

location information, the data of mobile phone signals were

analyzed, and third-party damage behavior was evaluated.

An area of about 10 km on a pipeline suffering from a

higher third-party risk was selected for monitoring using

the BLD to uninterruptedly determine the existing exca-

vation and construction activities. A big data association

model of mobile phone signal position was developed to

provide timely alarms.

2 Extraction of big location data

Big data are a combination of large complex datasets. The

scale and complexity of these datasets exceeds the capa-

bilities of current database management software and tra-

ditional data processing technology in acquisition,

management, retrieval, analysis, mining, and visualization

(Liu 2012).

2.1 Features of BLD

An important part of the big data is BLD. The location data

are a combination of geographical data and human social

information data containing the space position and time

identification. Here, the space position can be accurate

geographical coordinates and also can be a conventional

place or position (Guo et al. 2013, 2014).

The features of BLD are as follows:

(1) BLD are multiple, heterogeneous, and rapidly

changing with typical characteristics such as a large

volume, rapid update speed, diversity, and low

density.

(2) The common characteristic of BLD is space–time

identification; this can be described by absolute

location, coordinate, relative position, and language.

In addition, the space–time identification of the

location data should be accurate and reliable.

Accuracy, reliability, and credibility are required in

processing and analyzing the location data.

(3) This has a feature called ‘‘complex but sparse’’.

Because of the constraint in data acquisition tech-

nology, BLD may not reflect the overall picture of

the object.

Analysis of BLD means extraction of clues from the

local research object and establishment of several charac-

teristic patterns based on a single area ri or moving object

oi. The extraction methods for a feature model can be

divided into two categories as follows:

(1) First-order characteristics: this refers to characteris-

tics that can be easily calculated from the location

records, map data, or historical track of moving

objects in the region, such as the mean and variance.

(2) Second-order characteristics: this refers to charac-

teristics where the hybridity of original observation

data can be eliminated to a certain extent. These

features are processed by higher-order statistics.
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2.2 Extraction features of mobility pattern in a bar

area

Mobility pattern (MP) ump: take one or two (peer) moving

objects o as the observation target, and the aspects over a

period of time include the mobility uniqueness feature,

randomness and periodic features, metastatic nature, static

and dynamic intermittence, and expectations of movement

(Pan et al. 2013; Quinlan 1993a, b).

(1) Uniqueness feature, funiq

The mobility uniqueness feature can be used to distin-

guish moving objects and defined as the probability of a

track traii that can be determined according to the number

of given regions ||F||, average size of a region Fsize, and

interval of statistical time Ftime:

PF traiij j � 2 Fsize; Ftimej j; Fk kf g ð1Þ

When Fsize and Ftime are relatively appropriate, the activi-

ties of the bar area are considered. For example, the

probability to determine a unique path is very high in an

area with a length of 200 m and width of 50 m on both

sides of the pipeline (Fsize = 0.02 km2, Ftime = 0.5 h), and

it is only about 8 regions (||F|| = 8) (De Montjoye et al.

2013) When ||F|| is fixed, similar power-law relationships

of probability with Fsize and Ftime are established.

funiq ¼ a� Fsize

� �b

funiq ¼ a� Ftime

� �b ð2Þ

b is a power exponent and linear with ||F||:

b ¼ k1 � k2 Fk k ð3Þ

By observing a small number of regions with abnormal

activities surrounding the pipeline, third-party damage by

the relevant personnel or tracks of third-party construction

users can only be determined. This shows that individual

mobility has a high degree of regularity and also shows that

the mobility behavior significantly differs among different

populations.

(2) Periodic features, fperi

For a moving object, oi, a discrete Fourier transform was

conducted for the binarization of its access region’s

sequence Fj (1 means visiting, 0 means not visiting). By

observing the frequency of the largest Fourier transform

coefficient, the cycle of position TPj
i can be obtained (Liu

et al. 2010)

It is supposed that a group of regions A = {F1,

F2,…, F||F||} with the same access period TP = {T1,

T2,…, TQ} is divided into Q time slots. Thus, the

detailed probability distribution matrix of each indi-

vidual mobility P = [P1, P2,…, Pj] can be obtained.

Among them, Pj = [Pr(F1|T = Tj), Pr(F2),…, Pr(F||F||)]

represents the column probability vector. The location

record of the T time period in BLD is generated into [T/

TP] = m probability distribution matrix {P1, P2,…, Pm}

according to the cycle of TP. Then, the periodic

behavior of moving objects can be analyzed by calcu-

lating their Kullback–Leibler (KL) divergence (Yuan

et al. 2013).

The more precise standard location entropy can be

obtained:

HðPÞ ¼ �
XQ

tj¼1

X

A

Pr Fi T ¼ Tj
��� �

log2 Pr Fi T ¼ Tj
��� �

ð4Þ

Then, the entropy of relative distribution is:

KL P1 P2kð Þ ¼
XQ

tj¼1

X

A

PrP1
Fj

� �
log2

PrP1
Fj

� �

PrP2
Fj

� � ð5Þ

According to the order of relative entropy, hierarchical

cluster, the probability distribution of n continuous or

discontinuous location {P1, P2,…, Pn}, several clusters

frequently matching with each other and having the same

period (possibly maximum) could be obtained. This rep-

resented several typical periodic motion patterns of moving

objects oi (Song et al. 2010). During the clustering, the

position probability distribution for associating two clusters

Ci and Cj can be calculated as follows:

PNew ¼ Cij j
Cij j þ Cj

�� ��Pi þ
Cj

�� ��

Cij j þ Cj

�� ��Pj ð6Þ

3 Privacy protection for location data

Location information is generally formed by the identifi-

cation and location information. Identification information

is used to describe the user-specific attributes and charac-

teristics that can be uniquely identified by the user. Loca-

tion information represents a current specific location or

track within a certain time of the user.

The privacy protection measures are as follows: When

users submitted a service request to the server, accurate

location information was provided by the mobile client,

and the user’s real identity was hidden at the same time.

This method can provide high-quality location service to

the user according to the location information (Wang

2015). The relationship is shown in Fig. 1.

4 Techniques used in the BLD detection of third
parties along the pipeline

(1) Acquisition technology of third-party intrusion sig-

nal and GPS signal data
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The mobile data and GPS signals of third-party person-

nel activities along the pipeline were continually col-

lected for 24 h. The signals were used to establish the

location relationship between specific cell phone signals

and signal towers along the pipeline and to obtain

information related to mobile phone GPS location and

cell phone towers. The data collected from the mobile

equipment (including unique device ID, latitude, longi-

tude, and time stamp) were stored in a database or loaded

into the Hadoop platform.

(2) Storage technology for BLD

A computational framework model such as Hadoop,

efficient space–time index and distributed analysis tech-

nology for flow media, map data, and track data were

established. Because BLD are nonrelational, database

storage technologies were used, such as Hbase, Big SQL,

and Mango.

(3) Preprocessing technology of third-party mobile data

The filtering, integrity, reduction, and discretization

methods for third-party communication mobile data were

established as the pretreatment. Then, data mining,

machine learning, and other methods were used for further

processing and mining of location data to analyze the

correlation.

By the pretreatment of map and location trace data, the

plane map for continuous space was discretized and divi-

ded into several regions based on the BLD of map or road

network data. The main methods include grid division,

division according to road network, division according to

position density, and division according to reference sites

(Thiessen polygon) (Ester et al. 1996; Li et al. 2013; Pan

et al. 2013; Liu et al. 2010; Yuan et al. 2012; Zheng et al.

2013; Zhu et al. 2013), as shown in Figs. 2, 3 and 4. In the

analysis of BLD, especially the track data, the dataset

should have a high sampling rate to make a simple linear

interpolation in the track data. ST-matching, IVMM,

Passby, and other algorithms and methods were used to

relate the track data and map data (Lou et al. 2009; Liu

et al. 2012; Tang et al. 2012; Yuan et al. 2010).

(4) Technology for feature extraction of third-party

damage risk.

The feature model between the mobile phone locations

and risk of third-party damage was established according to

the time feature, which was used to extract the valuable

information and following three types of features: (a) Re-

gional static characteristics. Taking a certain area as the

observation object, the indexes related to the map were

extracted, including the road network characteristics and

change rate of concerned points. (b) Mechanical charac-

teristics of regional position movement. The behavior of

the moving group targets in the area such as the time

evolution of the regional traffic mobility was extracted.

(c) Movement patterns characteristics of individuals/groups

in different periods. Taking the moving individual/group as

the observation object, the mobile behavior characteristics

of individual/group within a period of time were extracted.

The second-order statistical characteristics and their

application to the service calculation of the specific loca-

tion were studied (Duan et al. 2014). By establishing the

model, the signs of risk of third-party damage and

destruction were identified.

With the acquisition of BLD, the data quantity gradually

increased, and the pattern recognition methods were con-

stantly updated. Logistic regression, support vector

machine (SVM), random and uncertain analysis model,

wavelet transform, and neural network model were used to

analyze the BLD. Combining the behavior of third-party

personnel with pipeline risk characteristics, the precision of

the forecast warning model was improved.

(5) Visualization methods for third-party damage risk

based on BLD.

A statistical chart was used to show the results or data

trends in data processing. Based on the characteristics of

large scale and diversity, visualization methods were

developed to accurately simulate the development state and

motional tendency of third-party intrusion along the

pipeline.

Mobile
phone

anonymous
group

Location anonymization

Inquiry processing

Velocity detection

Buffer storage

Location
service
provider

Location inquiry
request

Communication protocol

Inquiry results

Fig. 1 Location privacy protection

A

B

C
D

R1

R1

R2

R2

Fig. 2 Location distribution: road, traffic, and village network

diagram near the long-distance transportation pipeline
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(6) Forecast warning system for third-party damage to

pipeline.

Through the abovementioned research, a third-party

forecasting and early warning system for pipeline were

established, including data acquisition, data storage, data

analysis and modeling, data risk visualization, and trend

analysis.

5 Case study

5.1 Application steps

The length of the pipeline in this case is 9.8 km. By

accessing the mobile phone signals, important results were

obtained in the modeling of third-party damage prevention.

Specific steps for mobile phone BLD analysis are as

follows:

(1) Data acquisition

This is the first step. Wireless service providers are

responsible for collecting location information. A mobile

phone provides services using a group of mobile phone

signal towers. Its specific location can be obtained by tri-

angulation to the distance from the nearby towers, and the

position accuracy is less than 20 m. Most smart phones can

even provide more accurate GPS location information (the

accuracy is about 20 m). Location data including latitude

and longitude require 26 bytes if all this information are

stored. If you are dealing with 2 million users and store

their position information per minute, the size is about

0.1 TB per day.

In this case, the particular personnel can be three types

of people: pipeline managers who have periodic and fre-

quent activities on pipeline base, station, and line; planned

construction personnel along the pipeline section, who

report to the management. Their activities are clear to

managers, illegal excavation, construction and sabotage

persons are the focus of the monitoring data analysis.

In practical engineering applications, mobile signals

within a distance of ±50 m from the mobile tower to

pipeline have been accessed from mobile companies.

Mobile companies encrypt the data, changing mobile sig-

nals into specific codes. The movement of these codes is

under analysis, not involving personal privacy and security.

(2) Big data storage and processing

Because of the nonrelational BLD, database storage

technologies such as Hbase, Big SQL, Mango, and others

were used to establish Hadoop analysis (Fig. 5).

(3) Dimension reduction analysis

For the dimension reduction treatment of a BLD net-

work in a space scale, the core is to reduce the nodes

(region) or edge (regional association) of the network and

obtain global features by analyzing the key components.

The main methods are dimensionality according to super

betweenness and dimension reduction according to prin-

cipal components. For the time scale, the dimension is

Fig. 3 Personnel activities

A

B

C

Fig. 4 Discrete reference point map along the pipeline
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mainly about time discretization, which reduces the simi-

larity between different time periods.

According to the time dimension (determined by the

maximum frequency of the occurrence of third-party

damage to pipeline), the time periods were shortened to

20:00–22:00, 12:00–14:00, and 2:00–4:00 with a higher

risk. For space dimension reduction, the location data in the

range of 30 m around the pipeline showed the range of

activity.

(4) Feature extraction and modeling of local location

data

For the hybrid of BLD, extraction of the static data of

mobile phone users should take a certain region as the

object of observation and obtain some indicators related to

landforms and maps of the area including the road network

features, change rate of points, and other static character-

istics. Based on the technology for extracting the mobility

pattern features in a bar area, the trajectory of the relevant

personnel of third-party damage risk or construction can

only be determined through the feature probability

extraction of individual location and two or more co-

locations.

The model for feature probability extraction H(P) is:

H1ðPÞ ¼ �
XQ

tj¼1

X

A

Pr Fi T ¼ Tj
��� �

log2 Pr Fi T ¼ Tj
��� �

ð7Þ

H2ðPÞ ¼ �
XQ

tn¼1

X

A

Pr Fm T ¼ Tnjð Þ log2 Pr Fm T ¼ Tnjð Þ ð8Þ

H Pð Þ ¼ H1 Pð Þ \ H2 Pð Þ ð9Þ

where Q is equal to 3 (Time periods are 20:00–22:00,

12:00–14:00, and 2:00–4:00); A is the strip area for 9.8 km

and 20 m within the scope of the pipeline; H1(P) is the

location probability for individual 1; H2(P) is the location

probability for individual 2; H(P) is the intersection degree

of the location probability for the two people in the same

area. Generally, warning is needed when it is greater than

90%.

In this case, the model of a third-party damage critical

region was developed according to the analysis of accident

statistics. The accident statistics show that 85% of the

third-party accidents have the same features: more than two

people, more than two times, and each static time for 0.5 h.

All these elements appeared in the same region.

(5) Data analysis

The mobile phone data were tested for 30 days, and

253,708 bar location data were collected. Then, all the

data were screened as follows: in accordance with two or

more people (not limited to the same person), at least

arriving at the same place twice (with two) above, and

each static time more than 0.5 h. After the screening and

statistical analysis, the final statistical data were 232, as

shown in Table 1.

The statistical analysis in Fig. 6 shows two high risk

points of abnormal personnel situation during

22:00–24:00 and 2:00–4:00, and they are the highest risk.

The level of personnel risk appearing at the wasteland,

hills, and gullies is medium. The level of personnel risk

appearing at the fields, railways, water conservancy pro-

ject, and sites is low.

Rely on
Hadoop to
find data

Data mining engine Intelligent 
network tools

Hadoop large-capacity
distributed file system

Big mobile phone

Time axis of the
mobile phone

Structure data

Historical data parsing

Advanced analysis

Data processing

WeChat
GPS

Recommend
Non-relational

database
Non-relational

database

Mobile phone
position

Location and
user information

Real-time analysis
and suggestion

Tools for report,
inquiry and analysis

Existing accident cases/
Non-relational database

Data warehouse/
The pipeline industry

Fig. 5 Hadoop distributed storage hardware integration for big location data
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After analysis, most people working in the fields around

the pipeline, about 145, belong to normal production. The

gully data were verified as returning farmland to forest

plant operation; however, the abnormal data at 2:00–4:00

were verified as illegal construction for green houses near

the pipeline and confirmed as not reporting to the pipeline

protection department. An illegal earth borrowing occurred

on the hill at 22:00–24:00, and the railway construction

near the pipeline belongs to emergency inspection at night.

12:00–14:00 is lunch time, attributing 21 times to the

model: 11 of them are involved in field farming; one of

them on gully land is involved in forest operation. The

wasteland, railway, highway, water conservancy, rivers,

and woodland account for five times in total and belong to

normal operation; however, the construction lacking nor-

mal monitoring on hills and wasteland work along the

pipeline account for four times.

The data analysis shows one illegal construction on hills

around the pipeline, one construction of a greenhouse at the

edges of the wasteland, and other situations belong to

normal work (fishing by the river). By analyzing the BLD,

the cross-projects along the pipeline would be understood,

and abnormal situations would be rapidly detected and

monitored.

5.2 Brief summary

(1) Comparison for technologies

By studying these technologies, the following characteris-

tics are given in Table 2.

Through comparison, several limitations were observed

in the existing third-party prevention technologies. For

example, the monitoring range of optical fiber early

warning is small, and the prediction function is not present.

The warning occurs after the occurrence of mining

behavior. The big data have the features of forecast

warning and protection. By collecting and analyzing the

real-time data within 50 m of the pipeline, maintenance

personnel can reach the scene to prevent third-party con-

struction damage.

(2) Scientific problems to be solved

By analyzing big data, the early warning problem of the

risk of third-party damage for bar area pipeline facilities

was solved. With the established intersection degree model

of location probability, the characteristics of the risk of

third-party damage to pipelines can be accurately defined.

Furthermore, the technology can also be extended to third-

Table 1 Statistics of mobile phone location data

Time Location

Gully Field Wasteland Hill Railway Highway Site Water conservancy project River Forest Statistics

6:00–8:00 1 13 0 0 0 1 0 0 0 1 16

8:00–10:00 2 25 0 0 1 2 3 2 3 2 40

10:00–12:00 0 37 1 0 1 2 4 3 2 0 50

12:00–14:00 1 11 2 2 1 1 0 1 1 1 21

14:00–16:00 0 13 1 0 0 3 3 2 2 1 25

16:00–18:00 0 25 1 0 2 5 4 3 2 2 44

18:00–20:00 0 21 0 0 1 2 2 3 3 1 33

22:00–24:00 0 0 0 1 1 0 0 0 0 0 2

24:00–2:00 0 0 0 0 0 0 0 0 0 0 0

2:00–4:00 0 0 1 0 0 0 0 0 0 0 1

4:00–6:00 0 0 0 0 0 0 0 0 0 0 0

Statistics 4 145 6 3 7 16 16 14 13 8
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Fig. 6 Diagram of third-party personnel activities and time
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party monitoring for railways, highways, and electricity

networks.

6 Conclusions

(1) For the first time, BLD technology was used to

reduce the risk of third-party damage to pipelines. A

set of BLD acquisition technologies was established,

including encryption technology, data preprocessing

technology, third-party damage pattern feature

extraction technology, and third-party damage risk

visualization methods. A prediction and warning

system was developed for third-party damage to

pipelines based on BLD.

(2) The case study shows that illegal third-party con-

struction around the pipeline can be rapidly found

using this technique. Early detection of risks and

automatic classification of the system can help to

control the third-party risk to pipelines.

(3) Through time and regional dimension reduction to

reduce the nodes in the mobile data network, the

periods with high third-party risk can be extracted,

thus effectively solving the discretization problem of

third-party location data.

(4) The developed method in this study has overcome

the deficiency of other methods, such as the uncer-

tainty and false alarm rate of optical fiber vibration

and remote sensing image analysis. By analyzing the

data, a three-dimensional network of enterprise

defense can be gradually established.

(5) The method can be used in pipeline safety manage-

ment and increase the strength of research and

application.
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