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Abstract Elastic impedance inversionwith high efficiency

and high stability has become one of the main directions of

seismic pre-stack inversion. The nonlinear elastic impedance

inversion method based on a fast Markov chainMonte Carlo

(MCMC) method is proposed in this paper, combining

conventional MCMC method based on global optimization

with a preconditioned conjugate gradient (PCG) algorithm

based on local optimization, so this method does not depend

strongly on the initial model. It converges to the global

optimum quickly and efficiently on the condition that effi-

ciency and stability of inversion are both taken into consid-

eration at the same time. The test data verify the feasibility

and robustness of the method, and based on this method, we

extract the effective pore-fluid bulk modulus, which is

applied to reservoir fluid identification and detection, and

consequently, a better result has been achieved.

Keywords Elastic impedance � Nonlinear inversion � Fast
Markov chain Monte Carlo method � Preconditioned
conjugate gradient algorithm � Effective pore-fluid bulk

modulus

1 Introduction

Compared to amplitude versus offset (AVO) inversion

based on common mid-point (CMP) gathers, elastic

impedance inversion based on partial angle-stack gathers

has the advantages of high computational efficiency, high

stability, high noise immunity, and low dependence on the

quality of seismic data. This has been widely used in

reservoir fluid identification and detection, and has become

one of the main directions of pre-stack inversion (Downton

2005; Yin et al. 2014).

Connolly (1999) proposed the concept of elastic impe-

dance on the basis of acoustic impedance for the first time.

Cambois (2000) considered that the high noise immunity of

elastic impedance could avoid ‘‘leakage’’ between the

various AVO attributes generated by noise. This is more

advantageous in the extraction of pre-stack parameters.

Whitcombe (2002) first applied a new normalized form of

elastic impedance to improve the stability of parameter

extraction. Additionally, Martins (2006) and Cui et al.

(2010) introduced P- and P-SV wave elastic impedance in

weakly anisotropic media, respectively. In recent years,

fluid indicators estimated from seismic data play important

roles in reservoir characterization and prospect identifica-

tion, so many methods, such as elastic impedance inver-

sion, have been introduced to extract a variety of fluid

factors directly to avoid the cumulative error generated by

indirect combination of parameters in the process of

reservoir fluid identification (Ma 2003; Peng et al. 2008;

Zong et al. 2011, 2012; Yin et al. 2013b; Zhang et al. 2013;

Chen et al. 2014a, b; Li et al. 2014). Goodway et al. (1997)

proposed kq and lq as fluid indicators. Russell et al. (2011)

used f as a fluid indicator based on the poroelastic theory.

However, the sensitivity of these fluid indicators is

dependent on the mixed effect of pore fluid and rock

matrix. To improve the sensitivity of reservoir fluid iden-

tification, we use the effective pore-fluid bulk modulus as

the fluid indicator, which is related only to pore fluid and

may diminish the rock-matrix effect (Han and Batzle 2004;

Yin and Zhang 2014).
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The present elastic impedance inversion techniques are

mostly based on linear or quasi-linear inversion methods,

not only losing the precision of inversion in the process of

linearization but also strongly relying on the accuracy of

initial model, while convergence to the global optimum is

difficult in the usage of these techniques (Su et al. 2014).

However, the nature of most inverse problems is nonlinear

and multi-extremum, so in terms of the complex pre-stack

reservoir elastic parameter inversion, the development of

elastic impedance with high efficiency and high stability

based on the nonlinear inversion method has become more

significant. We propose a nonlinear elastic impedance

inversion method based on a fast Markov chain Monte

Carlo (MCMC) method, and validate the feasibility and

robustness of the method by testing the noise immunity of

well data. Meanwhile, on the basis of two-phase medium

theory for elastic impedance equation, we extract the

effective pore-fluid bulk modulus from seismic data to

apply to reservoir fluid identification and detection (Russell

et al. 2003; Yin et al. 2013a).

2 Fast MCMC method

Hastings (1970) proposed an extended form of the

Metropolis algorithm (Metropolis et al. 1953), the

Metropolis–Hastings algorithm, laying the foundation for

the development of the MCMC method. The MCMC

method was first applied to fully nonlinear inverse prob-

lems by Malinverno (2002). Zhang et al. (2011a, b)

studied post-stack and pre-stack seismic inversion meth-

ods based on the MCMC method. In recent years, the

MCMC method has been applied to sample the posterior

distribution of reservoir parameters for identifying reser-

voir lithology and fluid on the basis of a Bayesian

framework (Bachrach et al. 2009; Grana and Rossa 2010;

Rimstad and Omre 2010; Ulvmoen and Omre 2010;

Ulvmoen et al. 2010; Rimstad et al. 2012). However, the

conventional MCMC method has the defects of low

computational efficiency and a low convergence rate

toward the global optimum for multi-extremum inverse

problems, so we propose a faster MCMC method than the

conventional MCMC method in this paper.

2.1 Metropolis–Hastings algorithm

MCMC can sample posterior probability distribution

converging to inverted parameters in Bayesian inference,

and then make some statistical analysis of random sam-

ples to obtain useful properties of parameter posterior

distribution.

The construction methods of the transition kernel play

important roles in the MCMC method, including the

Metropolis–Hastings (M–H) algorithm and Gibbs algo-

rithm. We choose the M–H algorithm, and after a suffi-

ciently long iteration, stable Markov chains form, which

can be used in making the statistical analysis for random

samples of parameter posterior distribution, and which

satisfy the detailed balance condition.

2.2 Principle of fast MCMC method

Conventional MCMC can be applied efficiently to non-

linear and single-extremum inverse problems, but it is

difficult to converge to global optimums of multi-ex-

tremum inverse problems. Thus, we propose a fast

MCMC method, which integrates an efficient optimiza-

tion algorithm into the MCMC method to improve the

convergence rate to the globally optimal solution, and

greatly raises the computational efficiency of the MCMC

method.

The PCG algorithm is considered an efficient and

stable optimization algorithm (Stefano et al. 2013), so we

combine the MCMC method based on the global optimal

M–H algorithm with the PCG algorithm equipped with

local search ability. Overall, the central idea of the fast

MCMC method proposed in this paper is the integration

of the more efficient PCG algorithm in the process of

random search in whole space based on the global opti-

mal MCMC method. The method can search the solution

of inverted parameters for fast objective function con-

vergence, which saves the huge computational cost of

large numbers of iterations compared to the conventional

MCMC method. We call the more efficient algorithm the

‘‘fast MCMC method’’, and its specific process is shown

in Fig. 1.

To test the feasibility of the fast MCMC method, we

designed a simple bimodal probability density function

(PDF) p xð Þ ¼ 0:3� eax
2 þ 0:7� ea x�10ð Þ2 , and the esti-

mated parameter is a, whose true value is -0.2. Figure 2

shows two inverted results of 250 iterations from the

conventional MCMC method (blue solid line) and the fast

MCMC method (red solid line), respectively. From Fig. 2,

we find that the fast MCMC method converges to a global

optimal solution quickly, but conventional MCMC

method has not reached convergence condition after 250
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iterations, verifying that the fast MCMC method is more

efficient than conventional MCMC method to converge to

a global optimum.

The maximum likelihood solution of unknown param-

eter a is regarded as the estimated value, and then, we

sample the bimodal PDF p(x). As shown in Fig. 3, the

statistical characteristics of random samples sampled by

the fast MCMC method are quite consistent with the

characteristics of bimodal PDF, further verifying the fea-

sibility and reliability of the fast MCMC method and laying

the foundation for the fast algorithm of the nonlinear elastic

impedance inversion method.

3 Nonlinear elastic impedance inversion method
based on the fast MCMC method

The elastic inversion method used mostly now is the con-

strained sparse spike linear inversion method developed in

the 1980s, so we propose a nonlinear elastic impedance

inversion method based on the fast MCMC method to

improve the accuracy of elastic impedance inversion and

the reliability of reservoir prediction and fluid

identification.

3.1 Elastic impedance equation based on two-phase

medium theory

To improve the reliability of reservoir pore-fluid discrim-

ination, we choose the normalized elastic impedance

equation on the basis of two-phase medium theory, which

highlights the effective pore-fluid bulk modulus Kf (Yin

et al. 2013a; Yin and Zhang 2014):
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Fig. 1 Process of the fast MCMC method
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EI hð Þ ¼ EI0
Kf

Kf0

� �a hð Þ
fm

fm0

� �b hð Þ q
q0

� �c hð Þ /
/0

� �d hð Þ
; ð1Þ

where

a hð Þ ¼ 1�
c2dry
c2sat

 !
sec2h
2

ð2aÞ

b hð Þ ¼
c2dry
2c2sat

sec2h� 4

c2sat
sin2h ð2bÞ

c hð Þ ¼ 1� sec2h
2

ð2cÞ

d hð Þ ¼ sec2h
2

�
c2dry
c2sat

sec2hþ 4

c2sat
sin2h; ð2dÞ

and

EI0¼K
�1=2
f fm/

�3=2q1=2csat c2sat � c2dry

� �1=2
; ð2eÞ

where Kf is the effective pore-fluid bulk modulus term,

fm = /l is the dry rock matrix term, q is density, and /
is porosity value; Kf0, fm0, q0, and /0 are the average

effective pore-fluid bulk modulus, dry rock matrix term,

density, and porosity value of well data; EI0 is the nor-

malization coefficient; h is the average of the incident and

refracted angles; cdry
2 and csat

2 are the square of the P- to

S-wave velocities of the dry rock and saturated rock,

respectively.

3.2 Nonlinear elastic impedance inversion method

based on the fast MCMC method

Based on Bayes’ theorem, the posterior probability density

of inverted parameter r is expressed as

pðrjdÞ / pðrÞ � pðdjrÞ; ð3Þ

where d is the seismic observation data, r is the reflection

coefficient sequence, p(r|d) is the posterior probability of

the reflection coefficient, p(r) is the prior information, and

p(d|r) is a likelihood function.

Assuming seismic background noise obeys an indepen-

dent Gaussian distribution with a zero mean and rn
2 vari-

ance, the seismic observation likelihood function can be

expressed as

pðdjIÞ ¼ 1

2pr2n
� �N

2

exp �
X d � Grð ÞT d � Grð Þ

2r2n

 !
: ð4Þ

Meanwhile, based on the assumption that the prior

information obeys the Cauchy distribution to stand out

weak reflection of the underground media, the prior

information is expressed as

p rð Þ ¼ 1

prrð ÞM
YM
i¼1

1

1þ r2=r2r

� �
: ð5Þ

To obtain the posterior probability distribution p(r|d),

we apply the Metropolis–Hastings algorithm to generate

stable Markov chains converging to inverted parameter

r.

However, the conventional MCMC method results in

huge computational cost and there is likely to be insta-

bility in the inverted results. Therefore, having taken the

computational efficiency and inversion stability into

account, we apply the fast MCMC method (shown as

Fig. 1) to generate stable Markov chains converging to

the posterior probability density distribution of inverted

parameter and invert the elastic impedance using a non-

linear method based on the fast MCMC method to iden-

tify fluid.

In the Metropolis–Hastings algorithm, we choose a

symmetrical distribution satisfying a symmetric random

walk as the proposal distribution of the algorithm, so the

proposal distribution and acceptance rate are expressed

as

qðrt; r�Þ�Uðrt � delta; rt þ deltaÞ ð6aÞ

and

aðrt; r�Þ ¼ min 1;
pðr�Þqðr�; rtÞ
pðrtÞqðrt; r�Þ

� 	
¼ min 1;

pðr�Þ
pðrtÞ

� 	
:

ð6bÞ

In the PCG algorithm, on the Bayesian framework, we

construct the objective function expressed as

J rð Þ ¼ d � Grð ÞT d � Grð Þ þ l
XM
i¼1

ln 1þ r2=r2r
� �

þ a g� Crð ÞT g� Crð Þ; ð7Þ

where l ¼ 2
r2n
r2r
is the sparse constraint factor, and the larger

its value is, the more sparse the reflection coefficient is; the

last term in the equation is the elastic impedance constraint

term, C and g are integral operator matrix and relative

impedance value, respectively, and a is the elastic impe-

dance constraint factor, and the larger the value is, the
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more stable and accurate the inverted results are. Opti-

mizing the objective function, we get the ultimate equation

expressed as

GTGþ lQþ aCTC
� �

r ¼ GTd þ aCTg
� �

; ð8Þ

where Q = diag � � � ; 1

1þr2
i
=r2rð Þ2 ; � � �


 �
, and it adds the

denominator squared term to reduce the effect of

strength contrast and to highlight weak reflection of the

underground media, and it can be termed the modified

Cauchy constraint (Alemie and Sacchi 2011). Eventually,

we apply the fast MCMC method to invert the reflection

coefficient of different angles based on the convergence

judgment of Eq. (7), and then, we obtain the elastic

impedance of different angles by using the path integral

method or the recursion method.

3.3 Direct extraction of the effective pore-fluid bulk

modulus parameter

Expecting to apply elastic impedance volume of at least

four angles to extract the effective pore-fluid bulk modulus

directly following Eq. (1), we must turn the equation into a

log-domain equation at first, and then obtain 16 fitted

regression coefficients (a(hi), b(hi), c(hi), d(hi), i = 1, 2,

3, 4) via the least square method or the singular value

decomposition method by using the elastic impedance data

and well log data from nearby wells, and finally the

inverted elastic impedance data volume of four angles is

put into the equation expressed as

So we can obtain the effective pore-fluid bulk modulus

at any sampling point.

3.4 Process of fluid identification using

the nonlinear elastic impedance inversion

method based on the fast MCMC method

Synthesizing the research and analysis above, we con-

clude that the whole process of fluid identification using

the nonlinear elastic impedance inversion method based

on the fast MCMC method proposed in this paper is as

follows:

1. Pretreatment of pre-stack seismic data and well log

data;

2. Accurate extraction of four angle wavelets from pre-

stack seismic data;

3. Inversion of elastic impedance of four angles based on

the fast MCMC method by using four abstracted angle-

stack seismic gathers and four angles extracted from

seismic data from nearby wells;

4. Extraction of effective pore-fluid bulk modulus from

inverted elastic impedance of four angles on the basis

of two-phase medium theory for the elastic impedance

equation as the representation of reservoir pore-fluid

information;

5. Application of extracted effective pore-fluid bulk mod-

ulus to identify fluid and predict reservoir parameters.

4 Model test

To test the feasibility of fluid identification using elastic

impedance based on the fast MCMC method, we carry

out the feasibility and noise immunity test of a well in

one work area in the eastern China. The target reservoir

ln
EI t; h1ð Þ

EI0
¼ a h1ð Þ lnKfðtÞ

Kf0

þ b h1ð Þ ln fmðtÞ
fm0

þ c h1ð Þ ln qðtÞ
q0

þ d h1ð Þ ln/ðtÞ
/0

ln
EI t; h2ð Þ

EI0
¼ a h2ð Þ lnKfðtÞ

Kf0

þ b h2ð Þ ln fmðtÞ
fm0

þ c h2ð Þ ln qðtÞ
q0

þ d h2ð Þ ln/ðtÞ
/0

ln
EI t; h3ð Þ

EI0
¼ a h3ð Þ lnKfðtÞ

Kf0

þ b h3ð Þ ln fmðtÞ
fm0

þ c h3ð Þ ln qðtÞ
q0

þ d h3ð Þ ln/ðtÞ
/0

ln
EI t; h4ð Þ

EI0
¼ a h4ð Þ lnKfðtÞ

Kf0

þ b h4ð Þ ln fmðtÞ
fm0

þ c h4ð Þ ln qðtÞ
q0

þ d h4ð Þ ln/ðtÞ
/0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

: ð9Þ
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is a clastic reservoir at about 2.85 s in the seismic

profile.

As shown in Figs. 4a and 6a, we apply well log data to

make a synthetic seismogram in noise and noise-free sit-

uations, and then generate high-accuracy and high-resolu-

tion elastic impedance of four angles based on the fast

MCMC method for the direct extraction of effective pore-

fluid bulk modulus parameters, testing the feasibility and

noise immunity of the method.

From Fig. 5, we find that inverted effective pore-fluid

bulk modulus, dry rock matrix term, density, and porosity

values in the noise-free situation are consistent with the

true values, and synthetic angle gathers using these inver-

ted results produce fewer errors compared with real angle

gathers, so the inverted parameters can obviously reflect

the major characteristics of the oil-bearing reservoir,

agreeing with the results of oil-bearing reservoir from

logging interpretation.

From Fig. 7, we find that when adding random noise in

SNR = 3 to the synthetic seismograms, inverted effective

pore-fluid modulus, dry rock matrix term, density, and

porosity values are also consistent with the true values,

reflecting the major characteristics of the oil-bearing

reservoir well. Therefore, it validates the robustness and

noise immunity of the nonlinear elastic impedance inver-

sion method based on the fast MCMC in fluid identifica-

tion, and the inverted parameters are relatively accurate,

which can reflect the major characteristics of the oil-

bearing reservoir well and be applied to identify fluid and

predict reservoirs.

5 Application of real seismic data

The real work area is selected from an exploration area

in eastern China, and the target is a clastic reservoir. As

shown in Fig. 8, the logging interpretation results indi-

cate that the clastic reservoir at 2.85 s shows an oil layer

with thickness up to 13 m. To verify the application

effect of the method of fluid identification using the

nonlinear elastic impedance inversion based on the fast

MCMC method, we apply this method to real seismic

data.

First of all, we invert elastic impedance based on the fast

MCMC method using angle-stack seismic profiles with

four different angles, and the inverted elastic impedance

profiles of four angles are shown in Fig. 9, in which the

well logs are elastic impedance curves of four different

angles. Then, we extract the effective pore-fluid bulk

modulus based on inverted elastic impedance data volume

of four angles directly, and apply them to fluid identifica-

tion and reservoir prediction. With the two effective pore-

fluid bulk modulus logging curves in Fig. 10, the figure

shows the extracted effective pore-fluid bulk modulus

profile and enlarged partial profile.

From Fig. 9, we find that the inverted elastic impedance

profiles based on the fast MCMC method with four dif-

ferent angles are highly precise, which agree with the

results from the oil-bearing reservoir logging

interpretation.

Figure 10 shows that the extracted effective pore-fluid

bulk modulus is also consistent with the logging interpre-

tation results, presenting low values and reflecting the

characteristics of the oil-bearing reservoir, so it further
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validates the reservoir fluid detection and identification

from seismic data by using the nonlinear elastic impedance

inversion method based on the fast MCMC method, which

is promising in practical applications.

6 Conclusions

We introduce a more reliable fluid identification method

using nonlinear elastic impedance inversion based on the

fast MCMC in this paper, and the fast MCMC method is

the key of foundation for the nonlinear elastic impedance

inversion algorithm. Based on the Bayesian framework,

we can identify the reservoir hydrocarbon more accurately

owing to the more sensitive reservoir fluid indicator, that

is the effective pore-fluid bulk modulus, and this method

may improve the reliability and stability of fluid identi-

fication. Application research based on actual logging and
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seismic data shows that the nonlinear elastic impedance

fluid identification method based on the fast MCMC is a

practical method for reservoir fluid identification. How-

ever, the method has a limitation of obtaining only one

inverted result of the effective pore-fluid bulk modulus,

and may lack the uncertainty evaluation about reservoir

fluid identification. So further in-depth research and

analysis is needed, and we are intending to continue our

research in this field.
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