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Abstract: Linearized approximations of reflection and transmission coefficients set a foundation for
amplitude versus offset (AVO) analysis and inversion in exploration geophysics. However, the weak
properties contrast hypothesis of those linearized approximate equations leads to big errors when the two
media across the interface vary dramatically. To extend the application of AVO analysis and inversion
to high contrast between the properties of the two layers, we derive a novel nonlinearized high-contrast
approximation of the PP-wave reflection coefficient, which establishes the direct relationship between PP-
wave reflection coefficient and P-wave velocities, S-wave velocities and densities across the interface.
(A PP wave is a reflected compressional wave from an incident compressional wave (P-wave).) This
novel approximation is derived from the exact reflection coefficient equation with Taylor expansion
for the incident angle. Model tests demonstrate that, compared with the reflection coefficients of the
linearized approximations, the reflection coefficients of the novel nonlinearized approximate equation
agree with those of the exact PP equation better for a high contrast interface with a moderate incident
angle. Furthermore, we introduce a nonlinear direct inversion method utilizing the novel reflection
coefficient equation as forward solver, to implement the direct inversion for the six parameters including
P-wave velocities, S-wave velocities, and densities in the upper and lower layers across the interface. This
nonlinear inversion algorithm is able to estimate the inverse of the nonlinear function in terms of model
parameters directly rather than in a conventional optimization way. Three examples verified the feasibility
and suitability of this novel approximation for a high contrast interface, and we still could estimate the six
parameters across the interface reasonably when the parameters in both media across the interface vary
about 50%.

Key words: High-contrast interface, reflection coefficient, amplitude variation with angle, multi-

parameter estimation, artificial neural network inversion

1 Introduction

The Zoeppritz equation (Zoeppritz and Erdbebnenwellen,
1919) and its approximations as the fundamental
mathematical formulae for describing the amplitudes of
PP reflected waves from P-wave incident plane waves in
exploration geophysics under plane wave approximation
play an important role in AVO analysis/inversion (Smith
and Gidlow, 1987; Buland and Omre, 2003; Downton and
Lines, 2004; Yin et al, 2008; Zhang et al, 2012; Zong et al,
2012a; Zhang et al, 2013), lithology prediction (Ursin et
al, 2003; Fu et al, 2005; Buland et al, 2008; Ulvmoen and
Omre, 2010; Ulvmoen et al, 2010; Rimstad et al, 2012)
and fluid discrimination (Zhang et al, 2010; Russell et al,
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2011; Rimstad et al, 2012; Wang et al, 2012; Zong et al,
2012b). The Zoeppritz equation gives the precise values of
the amplitudes of the PP reflected plane wave. However, its
intrinsic nonlinearity makes it less appropriate in practical
applications. Therefore, linearized approximations with
different parameterization of the Zoeppritz equations are
more popular and practical (Bortfeld, 1961; Shuey, 1985;
Lu and McMechan, 2004; Vedanti and Sen, 2009; Karimi
et al, 2010; Alemie and Sacchi, 2011; Kim et al, 2011; Zhu
and McMechan, 2012; Zong et al, 2012b). For details about
different types of linearized approximations see Russell et
al (2011). The linearized approximations are derived under
the hypothesis of weak property contrasts between layers or
limited incident angle. However, these assumptions do not
hold especially at unconformities or at interfaces between
different lithofacies (Ayzenberg et al, 2009; Skopintseva et
al, 2011). Therefore, in this paper, we attempt to derive an
approximation of the PP reflection coefficient to adjust to
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high contrast situations.

We utilize the forward modeling and nonlinear inversion
method to test the feasibility and suitability of this novel
approximation. Two forward modeling models with different
degrees of property contrast are established and we compare
the reflection coefficients with the novel approximation,
exact Zeoppritz equation and linearized approximation,
respectively. As for the inversion method, an artificial
neural network nonlinear direct inversion is introduced to
estimate the six parameters with the novel approximation
as a forward solver. The artificial neural network nonlinear
inversion was initially proposed by Ruzek et al (2009). It is
a kind of nonlinear direct inversion approach rather than an
optimization approach. It has been proved that inversion is
more efficient than optimization when attempting to find the
inverse of G(-), which is the forward solver. It can provide
several solutions like the multiple realizations in stochastic
inversion by Bayesian inference (Buland and Omre, 2003).
For details about this inversion method refer to Rtizek et al
(2009). In appendix A hereunder, we will give the necessary
description of this method for the nonlinear inversion problem
with the novel approximation equation.

2 Modeling

The general theory of the P-wave reflection has been
widely discussed in the literature, so we shall reproduce
here only that required for an understanding of the notation
and terminology that we will use in this paper. For the cases
of incident longitudinal waves polarized in the plane of
incidence, the reflection coefficient of longitudinal waves can
be expressed as (Aki and Richards, 1980),
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where 6,,, 6g,, 0y, and 6Oy, are the incident angle of the
longitudinal wave, the reflective angle of the shear wave, and
the transmission angles of the longitudinal wave and shear
wave, respectively; Rpp is the reflection coefficient of the
longitudinal wave; V;,, Vg, and p, are the P-wave velocity,
S-wave velocity and density in medium 1, and V5, Vs, and p,
are the same in medium 2; p is the ray parameter.

The linearized approximation of Eq. (1) is given by Aki
and Richards (1980) as,
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where 0, is incident angle, AV,/V, is P-wave velocity
reflectivity, AVy/Vs is S-wave velocity reflectivity and Ap/p is
density reflectivity, and they can be expressed as,
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Taking the Taylor expansion for incident angle of Eq. (1),
we can express Ry in a closed form as,
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To examine the accuracy of our novel approximation of
PP-wave reflectivity, we compare the analytical result of Ry,
with the exact equation (1), linearized approximation equation
(2) and our novel nonlinearized approximation equation (6)
with the two-layer models in Table 1. Model one represents
the weak property contrast case, and the model two represents
the high contrast situation. Fig. 1 displays the reflection
coefficient of the model one with the exact equation (1) (solid
black), linearized approximation equation (2) (dashed blue)
and our novel nonlinearized approximation equation (6) (red
dots), and we can see that reflection coefficients with these
three equations show good similarity in the weak contrast
case. Fig. 2 displays the result of the model two, we can see
that the reflection coefficients from linearized approximation
show high errors compared to that from the exact equation,
and the reflection coefficient from our novel approximation
still shows high similarity to that from the exact equation at a
moderate incident angle.

3 Nonlinear inversion

To test the possibility of estimating parameters with
our novel approximation, we introduce an artificial neural
network direct nonlinear inversion method (Ruzek et al,
2009). The inversion is formulated in a direct inversion
scheme utilizing Eq. (6) as the forward solver. We restrict our
computational domain to various two-layer models to test the
effectiveness and potential of our novel approximation in high
contrast media. Similar to Rabben et al (2008), we attempt to
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Table 1 Model parameters for forward modeling
Model One
Parameters P-wave velocity ~ S-wave velocity Density, kg/m’
m/s m/s
Upper medium 2898 1610 2424
Lower medium 2857 1666 2375
Model Two
Parameters P-wave velocity ~ S-wave velocity Density, kg/m®
m/s m/s
Upper medium 2898 1290 2424
Lower medium 2557 1666 2075
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Fig. 1 Reflection coefficient comparison between the exact equation (1)

(solid black), linearized approximation equation (2) (dashed blue) and

our novel nonlinearized approximation equation (6) (red dots) with the
model one in Table 1
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Fig. 2 Reflection coefficient comparison with the exact equation (1) (solid

black), linearized approximation equation (2) (dashed blue) and our novel

nonlinearized approximation equation (6) (red dots) with the model two in
Table 1

estimate the parameters from reflection coefficients to avoid
the wavelet estimation and the convolution in the modeling.

We utilized the exact equation (1) as the synthetic model.
The model vector m comprises of P-wave velocities, S-wave
velocities and densities in the upper and lower layers. The
observed data d are the reflection coefficients with different
incident angles of Eq. (1).

The model parameters and the data parameters can be
related through the nonlinear forward mapping,

d=G(m) (7

Here, we attempt to search for all possible solutions
of model parameters to satisfy the observed reflection
coefficients. With the artificial neural network direct inversion
method, we suppose the inverse to G(m) is G'(d).
Although the inverse mapping may not exist in entire spaces,
we can restrict ourselves to sufficiently small joint subspaces,
inside which the mapping G™'(-) is so smooth that the inverse
of G does exist,

G'(d,)=m, ®)

The artificial neural network direct inversion method is
an inverse (not optimizing) algorithm, utilizing numerical
approximation of Eq. (8) in empirically constrained
subspaces. Supposing there exists an inverse mapping
and its numerical approximation inside these subspaces, it
works simultaneously with a population of several so-called
individuals. Each individual contains a parameter vector, a
data vector and the model error. The model error is used for
relative classification of distinct models within the population
and for their sorting from the best to the worst model. The
computation records already evaluated and tested models so
that these models can be reused later. Repeated usage of some
models generates the possibility of efficient inversion with
minimum number of forward evaluations. Besides, several
solutions can be expected with this algorithm. Details of
this algorithm can be seen in Ruzek et al (2009). We shall
reproduce the algorithm in Appendix A but only to a level
required for an understanding of the notation and terminology
that we use in our examples and discussion section.

4 Examples

Various two-layer models are established in the inversion
test. The first one is a gas sand/shale model. The P-wave
velocity (V5,), S-wave velocity (V) and density (Density
1) in the gas sand is 2,438 m/s, 1,625 m/s and 2,140 kg/m’,
respectively, while the P-wave velocity (75,), S-wave velocity
(Vs,) and density (Density 2) in the shale sand is 3,048 m/s,
1,244 m/s and 2,400 kg/m’, respectively, and we refer to this
as the “first” model. The relative variation ratio of parameters
in two layers of the first model is displayed in Fig. 3. For this
model, Eq. (1) is used to generate R, at different incident
angles to simulate observed data. The introduced nonlinear
inversion method is then used to generate ten solutions for
each of the six parameters. With the introduced inversion
method, the results of parameters estimation are displayed
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in Fig. 4. Taking V,, for example, the left figure shows the
comparison between the estimated solutions and the true
value. The sequence numbers from 1 to 10 indexes the ten
solutions for V5, the value at sequence number 11 gives the
average value of the ten estimated values, and the value at
sequence number 12 gives the true value. The right figure
displays the relative error between the estimated solutions and
the true value. The sequence numbers from 1 to 10 indexes
the relative error between each estimated solution for V5, and
the true value, sequence number 11 gives the relative error
between the average value of all ten values and the true value.
The same key applies to the other five parameters. From Fig.
4, we can see that all six parameters can be inverted well and
the relative error is around 3% for each parameter.

Fig. 5 displays the relative change rate of the parameters
from medium 1 to medium 2 in the second model. It shows
that the parameters in medium 2 vary around 50% with
respect to the parameters in medium 1. Fig. 6 displays the
result of estimating six parameters with the second model
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Fig. 4 Results of estimating six parameters with the first model
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when the maximum incident angle is 31 degree. We can
see that even in high contrast media, the inversion with the
exact reflection coefficient equation still estimates the six
parameters reasonably.

Fig. 7 to Fig. 12 display the inversion results with the 2-D
surface model. Taking the P-wave velocity in upper medium
for example, Fig. 7(a) - 7(c) display P-wave velocity in upper
medium of the true model, inverted result and the relative
error between the true model and inverted result, respectively.
The same key applies to the other five parameters, as shown
in Fig. 7 to Fig. 12. From the inverted results, we can see
that, with the high-contrast approximation and the nonlinear
inversion algorithm, we can obtain reasonable inversion
results, and the relative error is around 4% for each parameter.

1

2345678 910112
Sequence number

"wr—

Relative error, %
(4]

12 3 4 5 6 7 8 9 10 11
Sequence number

(To be continued)



472

Pet.Sci.(2013)10:466-476

(Continued)

V., m/s

Vg, m/s

5500 10

5000 - E

4500 - 7

4000 - i

3500 - E

3000 - R

2500 - ]

2000 - E

Relative error, %

1500 R

1000 B

500 - E

12 3 456 7 8 910 1 12 1.2 3 45 6 7 8 9 10 11
Sequence number Sequence number

5500 10
5000 | : 9 ]
4500 | :
4000 | :
3500 .
3000 f .

2500 7

Relative error, %

2000 7

1500

1000

500

12 3 45 6 7 8 91011 12 1.2 3 4 5 6 7 8 9 10 1
Sequence number Sequence number

5500 10

5000 [ 7

4500 7

4000 7

3500 7

3000 | 7

2500

Relative error, %

2000

1500

1000

500

12 3 456 7 8 910 11 12 12 3 4 5 6 7 8 9 10 1
Sequence number Sequence number

(To be continued)



Pet.Sci.(2013)10:466-476

473

(Continued)

Cross line

5500

5000

4500

4000

3500

3000

2500

Density 1, kg/m?

2000

1500

1000

500

5500

5000

4500

4000

3500

3000

2500

Density 2, kg/m?

2000

1500

1000

500

Relative error, %

12 3 45 6 7 8 910 11 12

Sequence number

Relative error, %

12 3 456 7 8 9101 12
Sequence number

1 2 3 4 5 6 7 8 9 10 1
Sequence number

12 3 4 5 6 7 8 9 10 11
Sequence number

Fig. 6 Results of estimating six parameters with the second model (The description and definition of the figure are the same as in Fig. 4)
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Fig. 7 P-wave velocities in the upper medium (a) True model, (b) Inverted result, and (c) Relative error
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Fig. 8 P-wave velocities in the lower medium (a) True model, (b) Inverted result, and (c) Relative error
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Fig. 9 S-wave velocities in the upper medium (a) True model, (b) Inverted result, and (c) Relative error
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Fig. 12 Densities in the lower medium (a) True model, (b) Inverted result, and (c) Relative error

5 Conclusions

In this paper, we derived a high-contrast approximation
of the exact PP reflection coefficient in terms of six
parameters including P-wave velocities, S-wave velocities
and densities in upper and lower layers around a reflector.
We utilized the forward modeling and inversion method to
test the validity and feasibility of this novel approximation.
Forward modeling tests demonstrated the priority of the novel
approximation to the linearized approximation in reflection
coefficient modeling. A nonlinear direct inversion method
was introduced to estimate the six layer parameters around
a reflector. Model test showed that the inversion method for
multi-parameters with our novel nonlinearized approximation
of exact reflection coefficient equation could still get
reasonable inversion result even when the parameters in both
layers across the interface varied about 50%.
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Appendix A

Introduction of artificial neural network inversion
The artificial neural network inversion was initially
proposed by Riizek et al (2009). It is a kind of nonlinear
direct inversion approach rather than optimization approach.
It mainly contains the following steps.
Problem initialization
There is no need to allocate any specific models into the
starting model population, even if doing so is easy. We just
need to define the range for each model of the parameters,
(A-1)

mmin <m,- <mimax

i

(=123, 4,5, 6)

The starting population of models is generated from
the defined range with uniform probability. The number of
models in the starting population ¢ is not very important
because it will change during iterations. A suitable choice
can be 30< g <60, At each iteration, the current population
of models M” = mB,dB,errB} is sorted according to the
individual errors between the models and the candidate
solution. The diameter of the population R defines the size
of a subspace, inside which the next population of models
will be generated, and the index of the prediction function
ip specifies the prediction method used for predicting the
candidate solution, including linear regression (ip=1),

radial basis function network (RBFN) (ip=2), and Kriging
prediction (ip=3). Both of these parameters can be tuned
during the inversion, but in the beginning they are both set
to 1.

Prediction of population and candidate solution

There is a geometrical criterion in distinct iteration cycles
before population predicting, one model is selected as the
center of the population (m®), and the other surrounding
models are located randomly in the distance R measured from
the center of the population.

The prediction population is generated in such a way
that the center is located close to the expected solution, and
surrounding models are located randomly along the surface of
a hypersphere with diameter R and center m“. Provided both
the diameter R and the center m® are known, new models of
the predicting population can be obtained as follows. Firstly,
the center of the population is considered as the first model.
The matrix tensor C” whose value on the principal diagonal
line is defined as the square of the difference between the
maximum and minimum of each model parameter can be
decomposed using a Choleski decomposition as C"=L L.
Secondly, a random six dimensional unit vector g is
generated. Then, the proposed candidate model can be
expressed as,

m¢=m°+RL-g (A-2)

In any case when the candidate model m® is outside the
parametric hypercube, it is projected along the direction
(m®-m°) to the closest face of the parametric hypercube.
The archive of already evaluated models is checked and the
model {mk, d, errk} is selected, and this model is the closest
archive model to m* and still not connected to the predicting
population. We need to compute the distance s* between this
model and the candidate model. If the distance s* is smaller
than the distance between neighboring surrounding models,
the model {m*, d*, err*} is connected to the population,
otherwise, the candidate model m? is evaluated and is
connected to the predicting population and copied to the
archive for future use. Finally, the second step made g—1
times to obtain a population of total size g.

The prediction population above can be used for
estimating the solution (8) with the prediction algorithm.
The prediction algorithm is implemented for the local
approximation of the inverse mapping. Different prediction
algorithms with different index ip can be selected to estimate
the solutions, however the best solution is often to use
different prediction algorithms even inside each individual
inverse problem. Therefore, in our case, we use the prediction
algorithm in a cyclic manner according to the variable ip.

(Edited by Hao Jie)



