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Abstract:
amplitude versus offset (AVO) analysis and inversion in exploration geophysics. However, the weak 
properties contrast hypothesis of those linearized approximate equations leads to big errors when the two 
media across the interface vary dramatically. To extend the application of AVO analysis and inversion 
to high contrast between the properties of the two layers, we derive a novel nonlinearized high-contrast 

(A PP wave is a reflected compressional wave from an incident compressional wave (P-wave).) This 
novel approximation is derived from the exact reflection coefficient equation with Taylor expansion 
for the incident angle. Model tests demonstrate that, compared with the reflection coefficients of the 
linearized approximations, the reflection coefficients of the novel nonlinearized approximate equation 
agree with those of the exact PP equation better for a high contrast interface with a moderate incident 
angle. Furthermore, we introduce a nonlinear direct inversion method utilizing the novel reflection 

P-wave velocities, S-wave velocities, and densities in the upper and lower layers across the interface. This 
nonlinear inversion algorithm is able to estimate the inverse of the nonlinear function in terms of model 

and suitability of this novel approximation for a high contrast interface, and we still could estimate the six 
parameters across the interface reasonably when the parameters in both media across the interface vary 

Key words: High-contrast interface, reflection coefficient, amplitude variation with angle, multi-

Improving seismic interpretation: a high-contrast 

plane longitudinal wave

2012b). The Zoeppritz equation gives the precise values of 

intrinsic nonlinearity makes it less appropriate in practical 
applications. Therefore, linearized approximations with 
different parameterization of the Zoeppritz equations are 

different types of linearized approximations see Russell et 
al (2011). The linearized approximations are derived under 
the hypothesis of weak property contrasts between layers or 
limited incident angle. However, these assumptions do not 
hold especially at unconformities or at interfaces between 

al, 2011). Therefore, in this paper, we attempt to derive an 
approximation of the PP reflection coefficient to adjust to 
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1 Introduction
The Zoeppritz equation (Zoeppritz and Erdbebnenwellen, 

1919)  and i ts  approximat ions  as  the  fundamental 
mathematical formulae for describing the amplitudes of 
PP reflected waves from P-wave incident plane waves in 
exploration geophysics under plane wave approximation 
play an important role in AVO analysis/inversion (Smith 
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high contrast situations.
We utilize the forward modeling and nonlinear inversion 

method to test the feasibility and suitability of this novel 
approximation. Two forward modeling models with different 
degrees of property contrast are established and we compare 
the reflection coefficients with the novel approximation, 
exact Zeoppritz equation and linearized approximation, 
respectively. As for the inversion method, an artificial 
neural network nonlinear direct inversion is introduced to 
estimate the six parameters with the novel approximation 
as a forward solver. The artificial neural network nonlinear 

a kind of nonlinear direct inversion approach rather than an 
optimization approach. It has been proved that inversion is 

inverse of ( )G , which is the forward solver. It can provide 
several solutions like the multiple realizations in stochastic 
inversion by Bayesian inference (Buland and Omre, 2003). 

(2009). In appendix A hereunder, we will give the necessary 
description of this method for the nonlinear inversion problem 
with the novel approximation equation. 

2 Modeling
The general theory of the P-wave reflection has been 

widely discussed in the literature, so we shall reproduce 
here only that required for an understanding of the notation 
and terminology that we will use in this paper. For the cases 
of incident longitudinal waves polarized in the plane of 

be expressed as (Aki and Richards, 1980),

2
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where P1, S1, P2 and S2 are the incident angle of the 

the transmission angles of the longitudinal wave and shear 
RPP is the reflection coefficient of the 

VP1, VS1 and 1 are the P-wave velocity, 
S-wave velocity and density in medium 1, and VP2, VS2 and 2 

 is the ray parameter.
The linearized approximation of Eq. (1) is given by Aki 

and Richards (1980) as,
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where P VP/VP is P-wave velocity 
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Taking the Taylor expansion for incident angle of Eq. (1), 
we can express RPP in a closed form as,

2
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with
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To examine the accuracy of our novel approximation of 
RPP 

with the exact equation (1), linearized approximation equation 
(2) and our novel nonlinearized approximation equation (6) 
with the two-layer models in Table 1. Model one represents 
the weak property contrast case, and the model two represents 
the high contrast situation. Fig. 1 displays the reflection 

black), linearized approximation equation (2) (dashed blue) 
and our novel nonlinearized approximation equation (6) (red 
dots), and we can see that reflection coefficients with these 
three equations show good similarity in the weak contrast 
case. Fig. 2 displays the result of the model two, we can see 

show high errors compared to that from the exact equation, 
and the reflection coefficient from our novel approximation 
still shows high similarity to that from the exact equation at a 
moderate incident angle. 

3 Nonlinear inversion
To test the possibility of estimating parameters with 

our novel approximation, we introduce an artificial neural 

2009). The inversion is formulated in a direct inversion 
scheme utilizing Eq. (6) as the forward solver. We restrict our 
computational domain to various two-layer models to test the 
effectiveness and potential of our novel approximation in high 
contrast media. Similar to Rabben et al (2008), we attempt to 
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the wavelet estimation and the convolution in the modeling. 
We utilized the exact equation (1) as the synthetic model. 

The model vector m comprises of P-wave velocities, S-wave 
velocities and densities in the upper and lower layers. The 
observed data d
incident angles of Eq. (1). 

The model parameters and the data parameters can be 
related through the nonlinear forward mapping,

(7)Gd m

Here, we attempt to search for all possible solutions 
of model parameters to satisfy the observed reflection 

method, we suppose the inverse to G m  is G d . 
Although the inverse mapping may not exist in entire spaces, 

inside which the mapping G   is so smooth that the inverse 
of G does exist,

(8)G d m

The artificial neural network direct inversion method is 
an inverse (not optimizing) algorithm, utilizing numerical 
approximation of Eq. (8) in empirically constrained 
subspaces. Supposing there exists an inverse mapping 
and its numerical approximation inside these subspaces, it 
works simultaneously with a population of several so-called 
individuals. Each individual contains a parameter vector, a 
data vector and the model error. The model error is used for 

and for their sorting from the best to the worst model. The 
computation records already evaluated and tested models so 
that these models can be reused later. Repeated usage of some 
models generates the possibility of efficient inversion with 
minimum number of forward evaluations. Besides, several 
solutions can be expected with this algorithm. Details of 

reproduce the algorithm in Appendix A but only to a level 
required for an understanding of the notation and terminology 
that we use in our examples and discussion section.

4 Examples

Various two-layer models are established in the inversion 
test. The first one is a gas sand/shale model. The P-wave 
velocity (VP1), S-wave velocity (VS1) and density (Density 

3, 
respectively, while the P-wave velocity (VP2), S-wave velocity 
(VS2) and density (Density 2) in the shale sand is 3,048 m/s, 
1,244 m/s and 2,400 kg/m3, respectively, and we refer to this 

model, Eq. (1) is used to generate RPP at different incident 
angles to simulate observed data. The introduced nonlinear 
inversion method is then used to generate ten solutions for 
each of the six parameters. With the introduced inversion 
method, the results of parameters estimation are displayed 
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(solid black), linearized approximation equation (2) (dashed blue) and 
our novel nonlinearized approximation equation (6) (red dots) with the 

model one in Table 1

Fig. 2
black), linearized approximation equation (2) (dashed blue) and our novel 
nonlinearized approximation equation (6) (red dots) with the model two in 
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Parameters         P-wave velocity 
m/s

S-wave velocity
 m/s Density, kg/m3

Upper medium 2898 1290 2424

1666

Parameters         P-wave velocity
 m/s

S-wave velocity 
m/s Density, kg/m3

Upper medium 2898 1610 2424

1666

Table 1 Model parameters for forward modeling
Model One

Model Two
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in Fig. 4. Taking VP1 for example, the left figure shows the 
comparison between the estimated solutions and the true 
value. The sequence numbers from 1 to 10 indexes the ten 
solutions for VP1, the value at sequence number 11 gives the 
average value of the ten estimated values, and the value at 
sequence number 12 gives the true value. The right figure 
displays the relative error between the estimated solutions and 
the true value. The sequence numbers from 1 to 10 indexes 
the relative error between each estimated solution for VP1 and 
the true value, sequence number 11 gives the relative error 
between the average value of all ten values and the true value. 

4, we can see that all six parameters can be inverted well and 
the relative error is around 3% for each parameter. 

from medium 1 to medium 2 in the second model. It shows 

respect to the parameters in medium 1. Fig. 6 displays the 
result of estimating six parameters with the second model 

Fig. 3 Relative variation ratio of parameters 
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Fig. 4

Fig. 5 Relative variation ratios of parameters 
in two layers with the second model
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when the maximum incident angle is 31 degree. We can 
see that even in high contrast media, the inversion with the 
exact reflection coefficient equation still estimates the six 
parameters reasonably. 

Fig. 7 to Fig. 12 display the inversion results with the 2-D 
surface model. Taking the P-wave velocity in upper medium 
for example, Fig. 7(a) - 7(c) display P-wave velocity in upper 
medium of the true model, inverted result and the relative 
error between the true model and inverted result, respectively. 

in Fig. 7 to Fig. 12. From the inverted results, we can see 
that, with the high-contrast approximation and the nonlinear 
inversion algorithm, we can obtain reasonable inversion 
results, and the relative error is around 4% for each parameter.

(To be continued)

(Continued)
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Fig. 7 P-wave velocities in the upper medium (a) True model, (b) Inverted result, and (c) Relative error
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Fig. 11 Densities in the upper medium (a) True model, (b) Inverted result, and (c) Relative error

Pet.Sci.(2013)10:466-476

Inline Inline Inline

(a) (b) (c)

C
ro

ss
 li

ne

90

80

70

60

50

40

30
20

10

C
ro

ss
 li

ne

90

80

70

60

50

40

30
20

10

C
ro

ss
 li

ne

90

80

70

60

50

40

30
20

10

20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

0.5

1.0

1.5

2.0

2.5

3.5

4.0

4.5

3.0

1400

1380

1360

1340

1320

1300

1280

1260

1400

1380

1360

1340

1320

1300

1280

1260

Fig. 9 S-wave velocities in the upper medium (a) True model, (b) Inverted result, and (c) Relative error

Fig. 10 S-wave velocities in the lower medium (a) True model, (b) Inverted result, and (c) Relative error
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Fig. 8 P-wave velocities in the lower medium (a) True model, (b) Inverted result, and (c) Relative error



5 Conclusions
In this paper, we derived a high-contrast approximation 

of the exact PP reflection coefficient in terms of six 
parameters including P-wave velocities, S-wave velocities 
and densities in upper and lower layers around a reflector. 
We utilized the forward modeling and inversion method to 
test the validity and feasibility of this novel approximation. 
Forward modeling tests demonstrated the priority of the novel 
approximation to the linearized approximation in reflection 
coefficient modeling. A nonlinear direct inversion method 
was introduced to estimate the six layer parameters around 

multi-parameters with our novel nonlinearized approximation 
of exact reflection coefficient equation could still get 
reasonable inversion result even when the parameters in both 
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Appendix A

The artificial neural network inversion was initially 

direct inversion approach rather than optimization approach. 
It mainly contains the following steps.
Problem initialization

starting model population, even if doing so is easy. We just 

min max ( 1,  2,  3,  4,  5,  6)i i im < m < m i                      
 
(A-1)

The starting population of models is generated from 
the defined range with uniform probability. The number of 
models in the starting population q is not very important 
because it will change during iterations. A suitable choice 
can be 30 60q . At each iteration, the current population 
of models , ,B B B BM errm d  is sorted according to the 
individual errors between the models and the candidate 
solution. The diameter of the population R defines the size 
of a subspace, inside which the next population of models 
will be generated, and the index of the prediction function 
ip specifies the prediction method used for predicting the 
candidate solution, including linear regression (ip=1), 

radial basis function network (RBFN) (ip=2), and Kriging 
prediction (ip=3). Both of these parameters can be tuned 
during the inversion, but in the beginning they are both set  
to 1.
Prediction of population and candidate solution

There is a geometrical criterion in distinct iteration cycles 
before population predicting, one model is selected as the 
center of the population (mC), and the other surrounding 
models are located randomly in the distance R measured from 
the center of the population. 

The prediction population is generated in such a way 
that the center is located close to the expected solution, and 
surrounding models are located randomly along the surface of 
a hypersphere with diameter R and center mC. Provided both 
the diameter R and the center mC are known, new models of 
the predicting population can be obtained as follows. Firstly, 

The matrix tensor Cm whose value on the principal diagonal 
line is defined as the square of the difference between the 
maximum and minimum of each model parameter can be 
decomposed using a Choleski decomposition as Cm=L LT. 
Secondly, a random six dimensional unit vector g is 
generated. Then, the proposed candidate model can be 
expressed as,

(A-2)g C Rm m L g

In any case when the candidate model mC is outside the 
parametric hypercube, it is projected along the direction  
(mg mC) to the closest face of the parametric hypercube. 
The archive of already evaluated models is checked and the 
model {mk, dk, errk} is selected, and this model is the closest 
archive model to mg and still not connected to the predicting 
population. We need to compute the distance sg between this 
model and the candidate model. If the distance sg is smaller 
than the distance between neighboring surrounding models, 
the model {mk, dk, errk} is connected to the population, 
otherwise, the candidate model mg is evaluated and is 
connected to the predicting population and copied to the 
archive for future use. Finally, the second step made 1 
times to obtain a population of total size q.

The prediction population above can be used for 
estimating the solution (8) with the prediction algorithm. 
The prediction algorithm is implemented for the local 
approximation of the inverse mapping. Different prediction 
algorithms with different index ip can be selected to estimate 
the solutions, however the best solution is often to use 
different prediction algorithms even inside each individual 
inverse problem. Therefore, in our case, we use the prediction 
algorithm in a cyclic manner according to the variable ip.

(Edited by Hao Jie)
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