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Abstract: 

designed genetic algorithm to search for suitable regression parameters to match the EOS against 
measured data. The proposed method has been tested on three real black oil samples. The results show the 

EOS tuning algorithm for black oils.
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1 Introduction

upon oil and gas samples. Experimental data are obtained 

and used in combination with an equation of state model to 

conditions. 

substances and carbon groups. The carbon groups are not 

the critical properties of the carbon groups required for EOS 

deficiencies is to calibrate, or tune the EOS models against 
experimental data. There are no well defined rules for how 
to do regression of an equation of state model to match to 

(1986) contains an appendix on the choice, selection and 

equation of state.

state parameters. This tuned model is then can regarded as 
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pred exp represent predicted and experimental 
W is the weighting factor, Ndata expresses 

Xi 

classes of search techniques like calculus-based techniques, 

algorithms. Strong features of genetic algorithm such as its 

based on a stochastic-directed trend with roots on ideas from 

et al, 1995), and aircraft design (Parnee and Watson, 1999). 

production data on a structural model. 

matching PVT data for three real black oil fluid samples is 

2 Description of the method

the regression parameters in detail.

against the experimental data, matching parameters of 

weighting factors for different properties of the fluid which 

pseudo-components if splitting of the plus fraction is needed, 

Then the software uses the selected parameters to perform 

selects another set of items for the next run. These trial and 

is found.

the EOS model, assigns weighting factors, and determines 

interaction coefficients and matching parameters of the 

the different cases for the number of pseudo-components 

three different situations regarding the number of pseudo-
components were tested. These were: no splitting, 2 pseudo-

weighting factors, the general rules were applied. For 
example, the highest weighting factor was assigned to the 

are fed into the commercial PVT software, which has been 
coupled with the program, as the input data. The commercial 

and presents the best solution. The regression method used 
in the PVT software uses the Newton numerical method 
to find the minimum of a residual function that is defined 

calculated data matrix. The residual function depends on 
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the program and the new fluid model replaces the original 

the program compares these 3 solutions and selects the best 

iterations since the weighting factors do not change through 

degrades it. Fig. 1 shows three different cases extracted from 

Fig. 1
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Iteration 

a predetermined number of iterations  for some special cases 

against experimental data. Furthermore, sometimes the tuning 

The complete process is shown in Fig. 2.

3 Genetic algorithms

and genetic for the design and implementation of robust 

exist.
The genetic algorithms start with an initial population 

the current population of the solution is known as the parent 

the genetic processes occurring in the nature, i.e. selection, 

and their genetic information is recombined and modified 
to generate the new population known as offspring. The 
offspring are inserted into the population, replacing the parent 
population and producing a new generation. The genetic 

and representing them in a genetic format, the selection of 

new solutions. 

parameters in this case.
This process is iterated for the 30 different cases and at 

The phase diagram of the final model should represent 
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3.1 Initialization
The information that is to be held within the genome is 

a, b, Pc, Tc, acentric 

Vc and Zc are also 

spite of the fact that the general structure for genome is a 

each group being allocated to a separate chromosome. The 

chromosome for the EOS parameters is a two-dimensional 

Z

Fig. 2
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regression parameters in the chromosome of the EOS and 

example, the plus fraction row in the matrix has the highest 
Z

                                                                                                    (3)
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where fi i M 

RMSi

i.

This method is the simplest proportionate selection 

chromosome. Fig. 6 shows the principle of this selection 
method.
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Fig. 3 Example of a two-dimensional chromosome for the EOS parameters

the parent population.

3.2 Selection

this population are taken and used to form a new population 

population will be better than the old one. Solutions which 
are then selected to form new solutions are selected according 
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where N
Wi Xi represents 

xi

Fig. 4
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sum is greater than the random number, stop the summation 
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This loop is iterated while the required numbers of 
chromosomes are selected. 

3.3 Crossover and mutation operators
The selected parents should produce the next population 

x-coordinates 

y

x and y-coordinates of these numbers are 

dimensional chromosome. Fig. 7 shows different situations 

x and y-coordinates of the random numbers. 

this chromosome should be selected that shows the method of 

nor select none. So, this operator will not perform on these 

and flip (0 to 1, or 1 to 0) the gene in the two-dimensional 
chromosomes.

number is less than 0.33, the program will flip the first 
block and if the number is between 0.33 and 0.67, flip the 

mutation is 1, no change will be occurred. This is because 

change with respect to its generated random number. For 
C and the mutation 

M
C and M, 

When the offspring population is produced, we compare 

4 Sample data

are checked.

from two experiments performed on the fluids: constant 

Table 2 to Table 5 show the summaries and results of these 
tests.Fig. 7 
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Table 1

Black oil-1 Black oil-2 Black oil-3

2S 1.39 0.00 1.45

N2 0.88 0.36 0.23

2 5.18 0.51 3.84

1 22.57 25.24 26.03

2 6.94 7.91 7.81

3 5.91 5.48 5.67

i 4 0.98 1.07 1.01

n 4 2.97 3.39 3.09

i 5 0.93 1.42 1.02

n 5 1.03 1.73 1.15

6 3.07 4.98 2.73

7 4.06 2.60 6.16

8 4.14 1.49 3.69

9 3.69 2.76 2.77

10 3.45 3.10 2.75

11 2.11 2.44 3.28

12+ 30.68 35.52 27.30

Total 100.00 100.00 100.00

Table 2

Parameter
Value

Black oil-1 Black oil-2 Black oil-3

Saturation pressure, psia 1852 1404 2014

552 366.30 498.08

o 24.35 24.46 20.71

Test temperature, oF 255 220 255

Saturation pressure, psia 1845 1719 2013

547 420.19 498.03

Bo
1.457 1.332 1.405

o 24.46 22.54 20.88

Table 3

Pressure
psia g/cm3

Bo
Solution 

factor

Oil

cp

6044 0.760 1.395 1.335

5041 0.753 1.408 1.286

4043 0.746 1.421 1.237

3532 0.742 1.428 1.212

3030 0.738 1.436 1.188

2523 0.734 1.444 1.163

2323 0.732 1.448 1.153

2223 0.731 1.450 1.148

2123 0.730 1.452 1.144

2023 0.730 1.453 1.139

1925 0.729 1.455 1.134

1845 0.728 1.457 547.10 1.129

1521 0.734 1.427 478.08 0.875 1.146

1223 0.741 1.394 406.76 0.884 1.196

921 0.750 1.358 334.26 0.897 1.274

621 0.760 1.320 259.84 0.915 1.370

322 0.770 1.274 172.76 0.935 1.500

14.7 0.841 1.078 0.00 1.000 2.161

Table 4

Pressure
psia

Oil

g/cm3

Bo
Solution 

factor

Pressure
psia

Oil

cp

4992 0.792 1.293 4986 1.313

4493 0.789 1.298 3989 1.232

3995 0.786 1.303 2993 1.150

3498 0.783 1.309 2493 1.109

3001 0.779 1.315 1995 1.068

2503 0.776 1.321 1719 1.047

2206 0.773 1.325 1473 1.056

2107 0.772 1.326 1204 1.090

2008 0.772 1.327 905 1.204

1909 0.771 1.329 605 1.376

1811 0.770 1.330 305 1.570

1719 0.769 1.332 420.19 14.7 2.611

1513 0.773 1.316 381.66 0.873

1263 0.780 1.295 336.43 0.889

1013 0.786 1.275 291.02 0.900

763 0.796 1.250 245.40 0.91

513 0.802 1.229 196.32 0.928

263 0.812 1.198 140.05 0.946

14.7 0.864 1.062 0.00 1.000
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Table 5

Pressure
psia g/cm3

Bo
Solution 

factor

Oil

cp

5016 0.781 1.363 1.722

4021 0.774 1.376 1.634

3019 0.766 1.390 1.546

2617 0.763 1.395 1.510

2516 0.762 1.397 1.501

2416 0.761 1.398 1.492

2315 0.760 1.400 1.483

2215 0.760 1.402 1.475

2114 0.759 1.403 1.466

2013 0.758 1.405 498.03 1.457

1614 0.766 1.373 428.80 0.885 1.484

1212 0.776 1.337 350.21 0.897 1.626

814 0.786 1.300 270.92 0.913 1.876

411 0.797 1.258 183.64 0.937 2.238

14.7 0.863 1.075 0.00 1.000 4.288

5 Results and discussion

answers are produced for each sample. For black oil-1, six 

nine answers were acceptable as engineering aspects. Fig. 
8 to Fig. 10 show the results of the tuning of EOS against 

at saturation pressure. 

Table 6

Parameter

Black oil-1

Saturation pressure, psia 1845.00 1844.95

1.457 1.460

Black oil-2

Saturation pressure, psia 1719 1718.752

1.332 1.328

Black oil-3

Saturation pressure, psia 2013 2012.641

1.405 1.408

calculated for different properties. Table 7 shows the results 

equation was used:

(4)
1

1 100
�

� �

� �
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�
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where N represents the total number of experimental points 
Xi

and xi

Table 7

Parameter
Black oil-1 Black oil-2 Black oil-3

Saturation pressure 0.003 0.014 0.018

0.197 0.304 0.206

1.447 0.339 0.194

0.571 0.605 0.422

0.543 0.842 0.381

5.548 4.245 5.832

2.293 3.912 1.105

Z factor of gas 0.340 0.368 0.613

1.368 1.329 1.096

algorithm is its high speed in finding the solution. While 

in the other answers could be related to weighting factors. 
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manual tuning these factors can change through the process 

for each case, we would expect different results and tuned 

Fig. 8
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Fig. 9
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models for each case if we re-run the program. 

is run 10 times for black oil-1. Fig. 11 shows the number of 
acceptable solutions as engineering aspects for 10 different 

factors change in each run, the following equation is used in 
*

(5)
2

*

1

1 �
� �
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Fig. 10
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a suitable method in tuning EOS against PVT experimental 
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Table 8 Values of matching parameters for black oil-1

Omega-B pcrit

psia
Tcrit

°F
Vcrit (Visc)

ft3/(lb·mol) Zcrit (Visc) S shift

2S 0.45724 0.077796 1296.2 212.81 1.5698 0.28195 0.1 -0.1025978

N2 0.45724 0.077796 492.31 -232.51 1.4417 0.29115 0.04 -0.1313342

2 0.45724 0.077796 1071.3 88.79 1.5057 0.27408 0.225 -0.0427303

1 0.45724 0.077796 667.78 -116.59 1.5698 0.28473 0.013 -0.1442656

2 0.45724 0.077796 708.34 90.104 2.3707 0.28463 0.0986 -0.1032684

3 0.45724 0.077796 615.76 205.97 3.2037 0.27616 0.1524 -0.0775014

i 4 0.35598 0.060789 264.53 274.91 4.2129 0.14137 0.1848 -0.0619837

n 4 0.32196 0.070838 275.33 305.69 4.0847 0.13693 0.201 -0.0542249

i 5 0.45724 0.077796 491.58 369.05 4.9337 0.27271 0.227 -0.0417725

n 5 0.45724 0.077796 488.79 385.61 4.9817 0.26844 0.251 -0.0302779

6 0.45724 0.077796 436.62 453.83 5.6225 0.25042 0.299 -0.0072888

7 0.45724 0.077796 426.18 526.73 6.2792 0.25281 0.3 0.0575821

8 0.45724 0.077796 417.66 575.33 6.936 0.26082 0.312 0.031934

9 0.45724 0.077796 381.51 625.73 7.7529 0.25394 0.348 0.0594578

10 0.61738 0.054329 175.47 667.13 8.5539 0.12413 0.385 0.0861113

11 0.32196 0.070838 161.73 706.73 9.4028 0.12149 0.419 0.1139716

12+ 0.42403 0.056428 43.473 1122.7 22.792 0.058352 2.2726 0.766346

Table 9

2S N2 2 1 2 3 i 4 n 4 i 5 n 5 6 7 8 9 10 11 12+

2S 0

N2 0.176 0

2 0.096 -0.012 0

1 0.05 0.1 0.1 0

2 0.05 0.1 0.1 0 0

3 0.05 0.1 0.1 0 0 0

i 4 0.05 0.1 0.1 0 0 0 0

n 4 0.05 0.1 0.1 0 0 0 0 0

i 5 0.05 0.1 0.1 0 0 0 0 0 0

n 5 0.05 0.1 0.1 0 0 0 0 0 0 0

6 0.05 0.1 0.1 0.0279 0.01 0.01 0 0 0 0 0

7 0.05 0.1 0.1 0.03308 0.01 0.01 0 0 0 0 0 0

8 0.05 0.1 0.1 0.0363 0.01 0.01 0 0 0 0 0 0 0

9 0.05 0.1 0.1 0.03896 0.01 0.01 0 0 0 0 0 0 0 0

10 0.05 0.1 0.1 0.04092 0.01 0.01 0 0 0 0 0 0 0 0 0

11 0.05 0.1 0.1 0.04246 0.01 0.01 0 0 0 0 0 0 0 0 0 0

12+ 0.0814079 0.1 0.162816 0.06297 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0
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6 Conclusions
The results of this study show that the developed genetic 

and time consuming operations of tuning of EOS against 

property graphs show the successful tuning of EOS against 
measured data; furthermore, the average error values are 
below 2 percent for all the cases and prove that the GA 

we cannot argue that the method presented in this study is the 

The strong non-linearity of the EOS tuning process makes 
classical deterministic optimization methods inefficient 

approach would be to use heuristic type methods like 

continuous and discontinuous variables, changing several 
variables simultaneously and the ability of this method to 
work with different data structures in the same time, cause 
this optimization method to be a good choice to solve the 

The main advantage of the method is its high speed 

difficult work even for an experienced reservoir engineer 
and often needs a long time to find just one tuned model, 
the proposed method can find more than one solution in a 

of experts to the last stage, reducing costs and having the 
possibility of evaluating the different situations are the other 
advantages of this method to match PVT data and makes it 
an ideal method to implement as an automatic EOS tuning 

Comparing the RMS values for different iterations shows 
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that modifying the matching parameters indiscriminately 
does not develop the model necessarily and may results in the 

Since the GA is a stochastic algorithm, different results are 
achieved for different runs of the program and the proposed 
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