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Abstract: In the study of reservoirs, it is vital that we have a realistic physical model of the reservoir
fluid that accurately describes the hydrocarbon system and its properties. The available equations
of state (EOS) to model the fluid phase behavior have some inherent deficiencies that may cause
erroneous predictions for real reservoir fluids, so these models should be tuned against experimental
data by adjusting some parameters. Since there are many matching parameters, tuning the EOS against
experimental data is a tedious and difficult work. In this study, a genetic algorithm as an optimization
technique is used to solve this regression problem. This study presents a new method that uses a specially
designed genetic algorithm to search for suitable regression parameters to match the EOS against
measured data. The proposed method has been tested on three real black oil samples. The results show the
surprising performance of the developed genetic algorithm to match the experimental data of the selected
fluid samples. The main advantage of the used method is its high speed in finding a solution. Also, finding
more than one solution, working automatically, confining the role of experts to the last stage, reducing
costs and having the possibility of evaluating the different situations are the other advantages of this
method to match ordinary black oil PVT data and makes it an ideal method to implement as an automatic

EOS tuning algorithm for black oils.

Key words: Equations of state (EOS), tuning, genetic algorithms, black oil, chromosome, regression

1 Introduction

In the study of reservoirs, an accurate description of the
hydrocarbon system and its properties is important. It is vital
that we have a realistic physical model of our reservoir fluid
before we try to use it in a reservoir simulation. Oil and gas
properties are normally obtained through laboratory tests
upon oil and gas samples. Experimental data are obtained
under some specific conditions and usually are not sufficient
for a reservoir study. On the basis of these experimental
data, a model of the hydrocarbon mixture can be developed
and used in combination with an equation of state model to
calculate additional oil and gas properties under necessary
conditions.

The available equations of state (EOS) to model the fluid
phase behavior have some inherent deficiencies, particularly
for multi-component mixtures, that usually cause the models
to predict erroneous results even for well characterized
model fluids. Real reservoir fluids, composed of thousands
of compounds, are described by a limited number of pure
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substances and carbon groups. The carbon groups are not
fully defined. Generalized correlations, often with significantly
diverging results amongst themselves, are used to estimate
the critical properties of the carbon groups required for EOS
calculations. All these factors further deteriorate predictions
of EOS for real reservoir fluids (Danesh, 1998).

The current approach in the oil industry to overcome these
deficiencies is to calibrate, or tune the EOS models against
experimental data. There are no well defined rules for how
to do regression of an equation of state model to match to
laboratory measurements. The paper by Coats and Smart
(1986) contains an appendix on the choice, selection and
range limits of regression variables. However, the Coats and
Smart model is limited in choice of regression variables and
equation of state.

Although there is no single standard method for tuning,
the various approaches are basically similar; any differences
between the measured and calculated data are minimized
using a regression facility which adjusts various equation of
state parameters. This tuned model is then can regarded as
a representative of the reservoir fluid. Therefore, the main
purpose is to minimize an objective function, defined as the
sum of weighted squared deviations, as shown below:
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where ¥"°* and W represent predicted and experimental
values respectively; W is the weighting factor, N,,, expresses
the number of measured data points to be fitted; and X;
designates the regression variables. The optimum values
of variables are obtained by minimizing the multi-variable
regression function A.

Since there are many matching parameters to tune the EOS
against experimental data, the only practical way to perform
regression is by trial and error. Therefore, it is efficient to
use optimization techniques to solve the problem. Different
classes of search techniques like calculus-based techniques,
guided random search techniques, and enumerative
techniques are developed to deal with the optimization.
However, the strong non-linearity of the EOS tuning process
makes classical deterministic optimization methods inefficient
and unlikely to be successful. Therefore, an alternative
approach would be to use heuristic type methods like genetic
algorithms. Strong features of genetic algorithm such as its
ability to use continuous and discontinuous variables, working
in a parallel mode (Forrest et al, 1999), its ability to change
several variables simultaneously and work with different data
structures at the same time, suggest this optimization method
to be a better choice to solve the problems of matching PVT
data automatically.

Genetic algorithms (GAs) are stochastic techniques whose
search methods model a natural evolution. Their approach is
based on a stochastic-directed trend with roots on ideas from
natural evolution and fundamental ideas of Darwin. Over
the last 30 years, many engineering problems are solved by
employing genetic algorithms; examples include: the traveling
salesman problem (Gretenstette et al, 1985), nuclear reactor
management (Poon and Parks, 1992), process control (Fogarty
et al, 1995), and aircraft design (Parnee and Watson, 1999).
GAs were first used in petroleum engineering in 1980 for gas
pipeline operation (Goldberg, 1983). Nikravesh et al (2003)
have provided a collection of articles about the application
of soft computing techniques in oil exploration. Also, Velez-
Langs (2005) presented many papers in the literature that
describe genetic algorithm applications in seismology, well
log analysis, reservoir flow simulation, hydraulic fracturing
design and reservoir permeability. Romero and Carter (2001)
used a GA approach to implement reservoir characterization
by conditioning the reservoir simulation model to the
production data on a structural model.

In this study, application of a GA to the problem of
matching PVT data for three real black oil fluid samples is
described. The reservoir fluids are sampled from Iranian oil
IeServoirs.

2 Description of the method

In this section, the method proposed in this paper to tune
an EOS against the experimental data will be described. In the
next section, we describe the performance of GA in selecting

the regression parameters in detail.

In the commercial PVT software, an experienced user
spends a lot of time to specify many different parameters
in an interactive way. A suitable EOS that can be tuned
against the experimental data, matching parameters of
the selected EOS, binary interaction coefficients (BIC),
weighting factors for different properties of the fluid which
are measured experimentally, the method and number of
pseudo-components if splitting of the plus fraction is needed,
and a suitable model to calculate the oil viscosity and its
coefficients, should be determined by the PVT expert to find
the model describing the phase behavior of the reservoir fluid.
Then the software uses the selected parameters to perform
a multi-variable regression and by adjusting the selected
matching variables, tries to find the best model for that run.
At the end of each run, the PVT expert evaluates the results
and decides to accept or reject the fluid model and then
selects another set of items for the next run. These trial and
error procedures continue until a physically acceptable match
is found.

It is clear that tuning of EOS in this way is a tedious and
time consuming task. In this study, almost all the processes
are done automatically in a program. The program selects
the EOS model, assigns weighting factors, and determines
the limitations of matching parameters in a smart way and
then uses the GA to find the proper viscosity model, binary
interaction coefficients and matching parameters of the
selected EOS and viscosity model. Also, the program checks
the different cases for the number of pseudo-components
if splitting of heavy components is occurring. To simplify
the problem in our program, two different EOS, namely
3-parameters Peng-Robinson (3-PR) EOS and 3-parameters
Soave-Redlich-Kwong (3-SRK) EOS were tested, and the
program was run for each case thoroughly. Also for each
selected EOS, five different values of weighting factors and
three different situations regarding the number of pseudo-
components were tested. These were: no splitting, 2 pseudo-
components and 3 pseudo-components. In assigning the
weighting factors, the general rules were applied. For
example, the highest weighting factor was assigned to the
saturation pressure. Also, the method of constant mole
fraction (CMF) in splitting the heavy component was used.
As a result, by running the program, thirty different situations
will be tested. For each case, the suitable regression variables,
parameters of the selected EOS, BICs, viscosity model and its
parameters are specified by GA. Then, all the selected items
are fed into the commercial PVT software, which has been
coupled with the program, as the input data. The commercial
software performs a multi-variable regression and changes
the values of selected parameters in their predetermined
limit ranges in an attempt to minimize the objective function
and presents the best solution. The regression method used
in the PVT software uses the Newton numerical method
to find the minimum of a residual function that is defined
as the difference between the observed data matrix and the
calculated data matrix. The residual function depends on
the values of calculated data that are functions of regression
parameters. The output of the software is then evaluated
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by the GA to modify the regression variables for the next
run. This GA process is iterated for that special case until a
mathematically accepted solution is obtained according to
its root mean square (RMS) value. The solution saved by
the program and the new fluid model replaces the original
EOS and the GA process iterated for this new EOS. This
cycle is repeated three times and at the end of these cycles,
the program compares these 3 solutions and selects the best
one with the least RMS for the special case. The function of
GA will be described in the next section in details. Note that
the RMS value does not always decrease through the three
iterations since the weighting factors do not change through
these iterations in the program. Also, modifying the matching
parameters indiscriminately may results in the models that are
mathematically and physically unacceptable, so it is possible
that the first model is the best and modifying the model
degrades it. Fig. 1 shows three different cases extracted from
the program. In case a, the RMS value decreases through the
iterations slowly, while in case b, the RMS value increases
through the iterations. Case ¢ shows that the RMS value
decreases at the first time, but further modifying the model
deteriorates it completely. As it is shown, the variations in
RMS value are very sharp in case b for the third iteration
relative to the second one since the model may not represent
the fluid behavior any more by further modifying the
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Fig. 1 RMS variations through three iterations

parameters in this case.

This process is iterated for the 30 different cases and at
the end of each case, the best solution (lowest RMS) will be
saved. All these processes are performed automatically in the
program. At the end, 30 mathematically accepted solutions
are obtained by the program.

The least-squares fit to the observation data is not
necessarily the goal of equation of state fitting. To be precise,
the goal is to create a fluid model that behaves like the
reservoir fluid. There are aspects of the reservoir fluid that the
model must capture accurately.

The phase diagram of the final model should represent
the real fluid behavior. Sometimes modifying the matching
parameters indiscriminately results in badly tuned models that
are unrealistic physical models of our reservoir fluid and the
phase diagram could not be created. Also, it is possible that
the program could not converge to a favorite RMS value in

a predetermined number of iterations for some special cases
(e.g. the selected EOS could not model the fluid behavior or
splitting the pseudo-component causes the model to diverge);
therefore, it selects the best solution that may not be tuned
against experimental data. Furthermore, sometimes the tuning
of the model is physically unacceptable and it cannot predict
the real fluid behavior at other conditions correctly, so the
model cannot be used in a reservoir simulation.

Therefore, in the last stage, a PVT expert should evaluate
these mathematically accepted solutions and by considering
the mentioned aspects and using engineering judgment,
selects the physically accepted ones. So, by use of this
program, we confine the role of an expert to the last step.

The complete process is shown in Fig. 2.

3 Genetic algorithms

Genetic algorithms are heuristic type methods that
were first proposed by Holland (1975) as an abstraction of
biological evolution drawing on ideas from natural evolution
and genetic for the design and implementation of robust
adaptive systems, and since then a number of advanced
forms of simple GAs have been reported by several authors
(Konak et al, 2006; Bunnag and Sun, 2005). Over the last
30 years, GAs have received much attention because of their
potential as optimization techniques for complex functions
and an extensive number of applications (Goldberg, 1989;
Michalewicz, 1992). GAs are randomized search algorithms,
simulating the process of natural evolution and follows the
same principles as those in nature (survival of the fittest,
Charles Darwin). Although initially they were proposed as
an academic investigation, today GAs have been shown to be
effective over a wide range of problems. GA is applicable to
multi-objective optimization and can handle conflicts among
objectives. Therefore, it is robust where multiple solutions
exist.

The genetic algorithms start with an initial population
of randomly chosen feasible solutions to the problem being
addressed from the search space. As the algorithm progresses,
the current population of the solution is known as the parent
population and by applying genetic operators that model
the genetic processes occurring in the nature, i.e. selection,
crossover and mutation, the fitter individuals are selected
and their genetic information is recombined and modified
to generate the new population known as offspring. The
offspring are inserted into the population, replacing the parent
population and producing a new generation. The genetic
algorithm covers almost all parts of the solution space in each
generation of search, and by evolution of the algorithm, the
response point is directed to the optimum value. This process
is repeated until the optimization criterion is met.

According to the described structure, the formulation
of a GA for a specific problem requires the definition of
three main issues: the initialization of possible solutions
and representing them in a genetic format, the selection of
individuals according to their fitness value, and the genetic
operators such as crossover and mutation used to generate
new solutions.

In the following section, these elements will be discussed
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Fig. 2 Simplified diagram of the process

for the GA that we have used in this study.

3.1 Initialization

The information that is to be held within the genome is
the EOS and viscosity model matching parameters, BIC, and
the models of viscosity. Since the selected EOS is either 3-PR
or 3-SRK, the matching parameters are Q,, Q,, P, T,, acentric
factor and volume shift. Also the most widely used viscosity
models, namely Lohrenz-Bray-Clark (LBC), Pedersen, and
Aasberg-Petersen are used in this work. So, V, and Z are also
added to the matching parameters for the LBC correlation if
this model is selected for modeling viscosity.

Now we need to specify the structure of the genome. In
spite of the fact that the general structure for genome is a
one-dimensional array with each number specified by binary
bits, we have chosen to use a non-standard structure for the
genome. The variables have been split into three groups with
each group being allocated to a separate chromosome. The

chromosome for the EOS parameters is a two-dimensional
array and forms an 8*NCOMPS array of binary numbers.
NCOMPS shows the number of components of the fluid
sample. Also, the chromosome for BIC is a two-dimensional
array and forms a NCOMPS*NCOMPS array of binary
numbers and the chromosome of the models of viscosity is
a one-dimensional array of binary numbers with three bits.
Fig. 3 through Fig. 5 show typical chromosomes that are
used in this study. Note that binary interaction coefficient
matrix is symmetric and a chromosome like Fig. 4 is a good
representative of it.

In these chromosomes, 1 means that, the parameter is
a regression variable in tuning of EOS and 0 means that,
the parameter is not a variable. Note that using properties
of the lighter components as regression variables is not
a recommended method as these values are well defined,
also critical volumes and Z factors are only needed for
the LBC viscosity correlation. Therefore, in selecting the
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regression parameters in the chromosome of the EOS and
viscosity models parameters (Fig. 3), the program assigned a
probability number to each block following general rules. For
example, the plus fraction row in the matrix has the highest
probability, the critical volume and Z factor columns have
zero probability when the selected viscosity model is not
LBC, or the probability of the lighter components rows are
ZEeTo.

Omega-A Omega-B P, T Vi Z..  Acentric-factor S shift
HS| O 0 0 1 0 0 1 0
C, 0 0 0 0 0 0 0 0
C, 0 0 0 0 0 0 0 0
C, 0 0 0 0 0 0 0 0
C. 0 0 0 0 1 0 1 0
Ce 0 1 0 1 1 0 1 0
C. 1 1 1 1 0 1 0 1

Fig. 3 Example of a two-dimensional chromosome for the EOS parameters

H,S C, C, C, C. Cs Cr.
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Fig. 4 Example of a two-dimensional chromosome for the BIC

Lohrenz-Bray-Clark Pedersen Aasberg-petersen

1 0 0

Fig. 5 Example of a one-dimensional chromosome for the viscosity models

Considering these limitations, the program will produce
the parent population.

3.2 Selection

When the parent population is initialized, solutions from
this population are taken and used to form a new population
(offspring). This is motivated by a hope, that the new
population will be better than the old one. Solutions which
are then selected to form new solutions are selected according
to their fitness; the more suitable they are, the more chances
they have to reproduce. So, the first step is to calculate the
fitness value of each individual.

In this study, the following root mean square (RMS)
equation is used as an objective function:

— LN x Xi_xi 2 2
RMS = NZ{W,. ( H 2

i=1 x,’
where N represents the total number of experimental points;
W, represents the weighting factor for each point; X; represents
the calculated value; and x; represents the experimental value.
Note that, the smaller the RMS value, the better the
chromosome is. So, to simplify the problem, the output of
this objective function is used to calculate fitness value by the
following fitness function:

_1-RMS,
AN 3
D (1-RMS)) ©

J=1

where f; represents the fitness value of the individual i; M
represents the number of individuals in the population; and
RMS; represents the output of the objective function for the
individual .

As you can see, the fitness function is a relative function
and therefore, the fitness values are between 0 and 1. Also,
the greater the fitness value, the better the chromosome is.

When the fitness of each individual is specified, the
selection operator chooses better individuals according to
their fitness values. The selection method used in this study
is a stochastic sampling method called “roulette wheel”
(Shopova and Vaklieva-Bancheva, 2006).

This method is the simplest proportionate selection
scheme. In this method, parents are selected according to their
fitness. The better the chromosomes are, the more chances to
be selected they have. In this method, the individuals of the
population assume as slots of the Roulette-wheel. Each slot
is as wide as the probability for selection of the corresponded
chromosome is great. The size of the slot in the roulette wheel
is proportional to the value of the fitness function of every
chromosome. Fig. 6 shows the principle of this selection
method.

Fix pointer] 1
ZX polntS!

Fig. 6 Roulette wheel selection

The wheel is rotated and the chromosome that stops in
front of a fixed pointer is selected. Clearly, the chromosomes
with a larger fitness value will be selected more often.
Roulette-wheel selection gives preference to the better
individuals in the population and exerts a large pressure on
the search process.

This process can be described by the following algorithm:

1) [Sum] Calculate the sum of all chromosome fitness in
population (S).

2) [Select] Generate a random number from the interval (0,
S)

3) [Loop] Go through the population and sum the fitness
value of each chromosome in a sequential process. When the
sum is greater than the random number, stop the summation
process and select the previous chromosome.
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This loop is iterated while the required numbers of
chromosomes are selected.

3.3 Crossover and mutation operators

The selected parents should produce the next population
by crossover and mutation operators. Because of the special
genome structure in this study, we use specially designed
crossover and mutation operators.

The crossover adopted here is a kind of 2-point crossover
technique. In this method, two random numbers are produced.
Then, for crossover in the two-dimensional chromosomes
of EOS and viscosity model parameters, the x-coordinates
of these numbers are normalized between 1 and 8, and the
y-coordinates of these numbers are normalized between 1 and
the number of components of the fluid sample (NCOMPS).
Also, for crossover in the two-dimensional chromosomes
of BIC, the x and y-coordinates of these numbers are
normalized between 1 and NCOMPS. The coordinates
of these numbers, show the crossover region in the two-
dimensional chromosome. Fig. 7 shows different situations
for crossover in two-dimensional chromosomes according to
x and y-coordinates of the random numbers.

4
»
A=(a1, a2)
B=(b1, b2)
X
v
A=(a1, a2)
B=(a1, a2)
A=(a1, a2)
B=(b1, b2)
B
A=(a1, a2) C=(c1, c2)
B=(a1, a2) D=(d1, d2)

Fig. 7 Examples of crossover in two-dimensional chromosomes

For the one-dimensional chromosomes of viscosity
models, the crossover is meaningless since just one block of
this chromosome should be selected that shows the method of
modeling viscosity. We cannot select 2 models simultaneously
nor select none. So, this operator will not perform on these
chromosomes and they will be repeated in the next population
with no crossover.

The mutation method used in this study is a kind of one
point mutation technique. In this method, one random number
is produced. Then, like the crossover operator, the coordinates
of the random number are normalized. These coordinates
specify the mutation point like the crossover operation
and flip (0 to 1, or 1 to 0) the gene in the two-dimensional
chromosomes.

For the viscosity model chromosome, the program
generates a random number between 0 and 1. If the random
number is less than 0.33, the program will flip the first
block and if the number is between 0.33 and 0.67, flip the
second block, else the third block will be flipped. In these
chromosomes, if the value of the selected block for mutation
is 0, the value will change to 1 and the values of the other
blocks change to 0, but if the value of the selected block for
mutation is 1, no change will be occurred. This is because
only one viscosity model should be selected.

Both the crossover and mutation operators are
performed on the entire population, except viscosity models
chromosomes, with different probabilities. It means that,
an individual may suffer crossover, mutation, or both, or no
change with respect to its generated random number. For
example, if the crossover probability is C and the mutation
probability is M, first we generate a random number for each
individual. If the random number is smaller than C and M,
crossover and mutation are performed on the individual.

When the offspring population is produced, we compare
all individuals of parent and offspring populations and
replace the better individuals in the new population until the
new population is completed. According to the study under
consideration, this method causes the program to converge
fast. Also, using this method inserts an elitism operator into
the program automatically.

In this study, some rules of thumb are used to determine
the GA parameters. The population size is 275 individuals that
is equal to the number of variables, the number of generations
is 100, the crossover probability is 0.6, and the mutation
probability is 0.004 that is equal to 1/variable number (De
Jong, 1975; Goldberg, 1989).

4 Sample data

The fluids studied were three real black oil samples from
Iranian oil fields. The compositions of these fluids are listed
in Table 1. Note that as a first step, before any regression is
considered, the consistency and quality of the measured data
are checked.

The data that have been used in tuning of EOS are
from two experiments performed on the fluids: constant
composition expansion (CCE) and differential liberation (DL).
Table 2 to Table 5 show the summaries and results of these
tests.
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Table 1 Composition of the samples Table 3 Results of the DL test for black oil-1
Value, mol% Pressure Oil density B, Solution Gasv . . oil .
Components . 3 GOR compressibility  viscosity
P! psia g/lem’ RB/STB
Black oil-1 Black oil-2 Black oil-3 SCF/STB factor cp
6044 0.760 1.395 1.335
H,S 1.39 0.00 1.45
5041 0.753 1.408 1.286
N, 088 0.36 0.23 4043 0.746 1.421 1.237
€O, 5.18 0.51 3.84 3532 0.742 1.428 1.212
C, 22.57 2524 26.03 3030 0.738 1.436 1.188
2523 0.734 1.444 1.163
C, 6.94 7.91 7.81
2323 0.732 1.448 1.153
C, 5.91 5.48 5.67
’ 2223 0.731 1.450 1.148
i-Cy 0.98 1.07 1.01 2123 0730 1452 1.144
n-C, 2.97 3.39 3.09 2023 0.730 1.453 1.139
iC, 0.93 142 102 1925 0.729 1.455 1.134
1845 0.728 1.457 547.10 1.129
n-Cs 1.03 1.73 1.15
1521 0.734 1.427 478.08 0.875 1.146
Cs 3.07 4.98 2.73 1223 0741 1394 406.76 0.884 1196
c, 4.06 2.60 6.16 921 0.750 1.358 334.26 0.897 1.274
C 4.14 1.49 3.69 621 0.760 1.320 259.84 0915 1.370
322 0.770 1.274 172.76 0.935 1.500
C, 3.69 2.76 2.77
14.7 0.841 1.078 0.00 1.000 2.161
Cyp 3.45 3.10 2.75
C, 211 244 328 Table 4 Results of the DL test for black oil-2
Cppe 30.68 35.52 27.30 Pressure Oll. A Solution Gas. ... Pressure . Oll.
. density GOR  compressibility . viscosity
psia 5~ RB/STB psia
Total 100.00 100.00 100.00 g/em SCF/STB ___ factor cp
4992 0.792  1.293 4986 1.313
Table 2 Summary of CCE and DL tests 4493 0789 1.298 3989 1.232
3995 0.786  1.303 2993 1.150
Value
Parameter 3498 0.783  1.309 2493 1.109
Black oil-1 Black o0il-2 Black oil-3 3001 0.779 1315 1995 1.068
CCE test 2503 0.776  1.321 1719 1.047
Saturation pressure, psia 1852 1404 2014 2206 0.773  1.325 1473 1056
2107 0.772  1.326 1204 1.090
Solution GOR, SCF/STB 552 366.30 498.08
2008 0.772  1.327 905 1.204
Oil gravity of residual oil, "API 24.35 24.46 20.71 1909 0.771 1.329 605 1.376
DL test 1811 0.770 1.330 305 1.570
Test temperature, °F 255 220 255 1719 0.769  1.332  420.19 14.7 2.611
1513 0.773 1316  381.66 0.873
Saturation pressure, psia 1845 1719 2013
1263 0.780  1.295  336.43 0.889
Solution GOR, SCF/STB 547 420.19 498.03 1013 0786 1275  291.02 0.900
Formation volume factor
@ saturation pressure B,, RB/STB 1.457 1.332 1.405 763 0.796  1.250  245.40 0.91
Oil gravity of residual oil, "API 24.46 2254 20.88 S13. 0802 1229 196.32 0.928
. - 263 0.812  1.198  140.05 0.946
Notes: GOR: Gas oil ratio; SCF/STB: Standard cubic feet per stock tank
14.7 0.864  1.062 0.00 1.000

barrel; RB/SCEF: Reservoir barrel per stock tank barrel.
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Table 5 Results of the DL test for black oil-3

Pressure Oil density B, Solution Gas. .. .Oil.
. 3 GOR compressibility  viscosity
psia glem RB/STB SCF/STB factor cp
5016 0.781 1.363 1.722
4021 0.774 1.376 1.634
3019 0.766 1.390 1.546
2617 0.763 1.395 1.510
2516 0.762 1.397 1.501
2416 0.761 1.398 1.492
2315 0.760 1.400 1.483
2215 0.760 1.402 1.475
2114 0.759 1.403 1.466
2013 0.758 1.405  498.03 1.457
1614 0.766 1.373  428.80 0.885 1.484
1212 0.776 1.337  350.21 0.897 1.626
814 0.786 1.300  270.92 0913 1.876
411 0.797 1.258  183.64 0.937 2.238
14.7 0.863 1.075 0.00 1.000 4.288

5 Results and discussion

By running the program for the black oil samples, 30
answers are produced for each sample. For black oil-1, six
answers, for black oil-2, seven answers and for black oil-3,
nine answers were acceptable as engineering aspects. Fig.
8 to Fig. 10 show the results of the tuning of EOS against
measured data. As the figures show, the selected models
predict the fluid behavior well. Also, Table 6 shows the
results for saturation pressure and oil formation volume factor
at saturation pressure.

Table 6 Saturation pressure and oil formation volume factor
at saturation pressure for the DL test

Parameter Measured value  Calculated value
Black oil-1
Saturation pressure, psia 1845.00 1844.95
Oil formation volume factor
1.457 1.460
(@ saturation pressure, RB/STB
Black oil-2
Saturation pressure, psia 1719 1718.752
Oil formation volume factor
. 1.332 1.328
(@ saturation pressure, RB /STB
Black oil-3
Saturation pressure, psia 2013 2012.641
Oil formation volume factor 1.405 1.408

(@ saturation pressure, RB /STB

To analyze the results more efficiently, error values were
calculated for different properties. Table 7 shows the results
of this analysis. In calculating error values, the following
equation was used:

N
X, -x,
ERROR =~ 3| [ 2% 14100 @)
i=1 X

i

where N represents the total number of experimental points
for the property; X; is the calculated value for the property;
and x; is the measured value for the property.

Table 7 Error values in the determination of various parameters

Error value, %

Parameter
Black oil-1 Black 0il-2  Black oil-3
Saturation pressure 0.003 0.014 0.018
Formation volume factor

(@ saturation pressure 0197 0304 0206
Relative volume 1.447 0.339 0.194
Oil density 0.571 0.605 0.422
Oil formation volume factor 0.543 0.842 0.381
Oil viscosity 5.548 4.245 5.832
GOR 2.293 3.912 1.105
Z factor of gas 0.340 0.368 0.613
Average error value 1.368 1.329 1.096

Also, Table 8 shows the values of matching parameters
and Table 9 shows the values of BICs as a symmetric matrix
for fluid sample-1 after tuning of the model.

Results show that the presented method performed well in
tuning the EOS. The error values show that the GA operation
is really surprising in all cases. The main advantage of our
algorithm is its high speed in finding the solution. While
tuning of EOS is a tedious and difficult work even for an
experienced reservoir engineer and often needs a long time,
the proposed method can find the solution, by confining the
supervision by an expert to the last stage, in a short time and
save time and expenditure in reservoir studies. Furthermore,
this method prepares several possible answers for a problem
simultaneously. In the manual tuning of EOS, we could find
only one solution after a long time, but in this method, the
algorithm tests 30 different situations and delivers the best
answers at the end of each evaluation. Therefore, one might
test several alternatives in a short time and choose the desired
answers. Also, it is possible to use these different solutions
as a sensitivity analysis. Although the figures and tables
show the best answer of GA, the other physically accepted
answers of the algorithm are satisfying for a reservoir study.
As stated earlier, at the end of the program, there were 30
good answers and we selected some of them. Deficiency
in the other answers could be related to weighting factors.
Weighting factors play an important role in tuning of EOS. In
this method, weighting factors are specified at the start of the
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Fig. 8 Results of the tuning of EOS for black oil-1
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program and are fixed till the end of one evaluation while in
manual tuning these factors can change through the process
by the user. Hence, by improving the program in this way, we
may expect to have most of the 30 good answers desirable.
Note that tuning of EOS is not a unique work and a fluid

sample could be modeled with several different tuned models.
Furthermore, it is possible that a tuned model is achieved in
different ways. Since the GA is a stochastic algorithm and
the five groups of weighting factors are produced randomly
for each case, we would expect different results and tuned
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Fig. 9 Results of the tuning of EOS for black oil-2

models for each case if we re-run the program. To evaluate  factors change in each run, the following equation is used in
the variation caused by the stochastic algorithm, the program  calculating the RMS (RMS") values to compare the results:
is run 10 times for black oil-1. Fig. 11 shows the number of

acceptable solutions as engineering aspects for 10 different

runs. Also, Fig. 12 shows the RMS and average error values RMS™ =
for the best solution of each run. Since the RMS defined

by Eq. (2) depends on the weighting factors and these

)
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Fig. 10 Results of the tuning of EOS for black oil-3

Since the GA is a stochastic algorithm, different results
are achieved for different runs of the program and no especial
relation could be found among the results in the above graphs.
Since both the RMS* and average error values depend on the
difference between the observed and calculated values, their

trends are almost the same. Also, the above graphs show that
the proposed method could find the solution in each run.

These advantages introduce the proposed algorithm as
a suitable method in tuning EOS against PVT experimental
data for ordinary black oils.
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Table 8 Values of matching parameters for black oil-1

Components Omega-A  Omega-B 5 sc:; IC}F"' ﬂgc(riltb(~lr/rils:))l) Zoi (Vi) Acentric factor S shift
H,S 0.45724 0.077796 1296.2 212.81 1.5698 0.28195 0.1 -0.1025978
N, 0.45724 0.077796 492.31 -232.51 1.4417 0.29115 0.04 -0.1313342
Co, 0.45724 0.077796 1071.3 88.79 1.5057 0.27408 0.225 -0.0427303
C, 0.45724 0.077796 667.78 -116.59 1.5698 0.28473 0.013 -0.1442656
C, 0.45724 0.077796 708.34 90.104 2.3707 0.28463 0.0986 -0.1032684
G, 0.45724 0.077796 615.76 205.97 3.2037 0.27616 0.1524 -0.0775014
i-C, 0.35598 0.060789 264.53 274.91 42129 0.14137 0.1848 -0.0619837
n-C, 0.32196 0.070838 275.33 305.69 4.0847 0.13693 0.201 -0.0542249
i-Cs 0.45724 0.077796 491.58 369.05 4.9337 0.27271 0.227 -0.0417725
n-Cs 0.45724 0.077796 488.79 385.61 4.9817 0.26844 0.251 -0.0302779
Cs 0.45724 0.077796 436.62 453.83 5.6225 0.25042 0.299 -0.0072888
C, 0.45724 0.077796 426.18 526.73 6.2792 0.25281 0.3 0.0575821
Cy 0.45724 0.077796 417.66 575.33 6.936 0.26082 0.312 0.031934
C, 0.45724 0.077796 381.51 625.73 7.7529 0.25394 0.348 0.0594578
Ci 0.61738 0.054329 175.47 667.13 8.5539 0.12413 0.385 0.0861113
Cy 0.32196 0.070838 161.73 706.73 9.4028 0.12149 0.419 0.1139716
Ci 0.42403 0.056428 43.473 1122.7 22.792 0.058352 2.2726 0.766346

Table 9 Values of BICs for black oil-1
Component H,S N, CO, C, C, ¢ i-C, nC, i-C; nCy; C, C, C C C, C,; Cp,

H,S 0

N, 0.176 0

CO, 0.096 -0.012 0

C, 0.05 0.1 0.1 0

C, 0.05 0.1 0.1 0 0

C; 0.05 0.1 0.1 0 0 0

i-C, 0.05 0.1 0.1 0 0 0 0
n-C, 0.05 0.1 0.1 0 0 0 0 0

i-Cs 0.05 0.1 0.1 0 0 0 0 0 0

n-Cs 0.05 0.1 0.1 0 0 0 0 0 0 0

Cs 0.05 0.1 0.1 0.0279 0.01 001 0 0 0 0 0

C, 0.05 0.1 0.1 0.03308 0.01 0.01 0 0 0 0 0 0

Cy 0.05 0.1 0.1 0.0363 0.01 001 0 0 0 0 0 0 0

C, 0.05 0.1 0.1 0.03896 0.01 0.01 0 0 0 0 0 0 0 O

Cy 0.05 0.1 0.1 0.04092 0.01 0.01 0 0 0 0 0O 0 0 0 O

C, 0.05 0.1 0.1 0.04246 0.01 0.01 0 0 0 0 0O 0 0 0 O 0

Ci 0.0814079 0.1 0.162816  0.06297 0.01 0.01 0 0 0 0 0o 0 0 0 O 0 0
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6 Conclusions

The results of this study show that the developed genetic
algorithm can be successfully applied to the tedious, difficult,
and time consuming operations of tuning of EOS against
experimental data for three real black oil fluid samples. The
property graphs show the successful tuning of EOS against
measured data; furthermore, the average error values are
below 2 percent for all the cases and prove that the GA
operation is really surprising in all cases. However, at present,
we cannot argue that the method presented in this study is the
best form of the genetic algorithm for this problem.

The strong non-linearity of the EOS tuning process makes
classical deterministic optimization methods inefficient
and unlikely to be successful. Therefore, an alternative
approach would be to use heuristic type methods like
genetic algorithms. The ability of genetic algorithm to use
continuous and discontinuous variables, changing several
variables simultaneously and the ability of this method to
work with different data structures in the same time, cause
this optimization method to be a good choice to solve the
problem of matching PVT data automatically.

The main advantage of the method is its high speed
in finding solutions. While tuning the EOS is tedious and
difficult work even for an experienced reservoir engineer
and often needs a long time to find just one tuned model,
the proposed method can find more than one solution in a
short time. Also, working automatically, confining the role
of experts to the last stage, reducing costs and having the
possibility of evaluating the different situations are the other
advantages of this method to match PVT data and makes it
an ideal method to implement as an automatic EOS tuning
algorithm for ordinary black oils.

Comparing the RMS values for different iterations shows

that modifying the matching parameters indiscriminately
does not develop the model necessarily and may results in the
models that are mathematically and physically unacceptable.
Since the GA is a stochastic algorithm, different results are
achieved for different runs of the program and the proposed
method was successful in finding the solution in each run.
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